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1 Introduction

One of the most striking impacts between geometry, combinatorics and graph
theory, on one hand, and algebra and group theory, on the other hand, arise
from a concrete necessity to manipulate with the symmetry of the investigated
objects. In the case of graphs, we talk about such tasks as identification and
compact representation of graphs, recognition of isomorphic graphs and com-
putation of automorphism groups of graphs.

Different classes of interesting graphs are defined in terms of the level of their
symmetry, which which is founded on the concept of transitivity. A semisym-
metric graph, the central subject in this paper, is a regular graph Γ such that
its automorphism group Aut(Γ) acts transitively on the edge set E(Γ), though
intransitively on the vertex set V (Γ).

More specifically, we investigate links between two semisymmetric graphs,
both on 112 vertices, the graph N of valency 15 and the graph L of valency
3. While the graph N can be easily defined and investigated without serious
computations, the manipulation with L inherently depends on a quite heavy
use of a computer.

The graph L, commonly called the Ljubljana graph, see [76], has quite a
striking history, due to efforts of a few generations of mathematicians starting
from M. C. Gray and I. Z. Bouwer and ending with M. Conder, T. Pisanski and
their colleagues; the order of its automorphism group is 168. The graph L turns
out to be a spanning subgraph of the graph N , which has the group S8 of order
8! as automorphism group.

In our paper we reveal numerous interesting links between L and N , as well
as with diverse combinatorial structures, including association schemes, coher-
ent algebras, symmetric configurations, overlarge sets of Fano planes, partial
geometries, etc. For this purpose we exploit tools from algebraic graph theory
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and we also rely on an essential use of computer algebra packages, mainly GAP
and COCO.

The main results presented in the paper are various interesting properties
of the graphs L and N , as well as the discovery of a number of new association
schemes, namely those on 56 and 112 points, which are non-Schurian.

The style of our exposition, which proceeds from simple cases to more sophis-
ticated and which also tries to reflect the historical development of the topics
we discuss will hopefully enable the reader to visit in a sense the “kitchen” of a
computer algebra experimentation.

As a rule, most of the collected facts about the investigated structures at
the first attempt were obtained with the aid of a computer. Each time, in
this paper, special attention is paid to the presentation of a part of the ob-
tained computational results and their transformation to theoretical claims. In
a few cases the reader will become also a witness of a successful computer free
interpretation and further theoretical generalization of the original computer
generated information. Our aim was to combine in one paper the features of
at least three different genres: expository text about semisymmetric graphs;
tutorial on scientific computation in algebraic graph theory; report about the
new results achieved in our research.

Here is a very brief survey of the entire paper. Sections 2-4 provide a brief
account of the general preliminaries, introduction to double covers of graphs
and a review of semisymmetric graphs. The graphs N and L are introduced in
Sections 5, 6, the embeddings of L into N are examined in Section 8 with the aid
of a rank 20 master association scheme M on 56 points, which is introduced and
investigated in Section 7. The graph L is the incidence graph of a Ljubljana
configuration, the new view of which is presented in Section 9; with the aid
of a few auxiliary structures introduced in Section 10 (they are of a definite
independent interest), the embeddings of L into N are revisited in Section 11,
leading to a new example of a so-called Deza family in a Higmanian house (this
time on 120 points). In Section 12, paying tribute to the results by I. Dejter et al,
we consider one more model for the graph L, this time using the 7-dimensional
cube Q7 and Hamming code H3 inside of it.

A new family of association schemes on 56 points (which appears as a by-
product obtained by exploiting the approach which we follow) is introduced and
discussed in Section 13. The last three sections of the text are mainly oriented
to the future: promising links with a new concept of two-fold automorphisms
of graphs are outlined in Section 14; while Sections 15 and 16 pay attention to
many other facets of former and ongoing research, which may be relevant to the
continuation of the entire spectrum of ideas and techniques already exploited in
the paper. A detailed bibliography aims to help the reader to gain access to all
relevant sources of information.

We hope that this paper may assist the creation of new waves of scientific
computation to the benefit of both algebra and graph theory.
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2 Preliminaries

This project is fulfilled on the edge between a few diverse areas of algebra,
combinatorics, graph theory and scientific computation. For this reason it is
impossible in principle to provide to the reader a self-contained account of all
the necessary background information. Instead, we outline below a very brief
guide to the main ingredients of such a background, referring each time to the
most appropriate, in our eyes, sources in literature.

The area of finite permutation groups was strongly developed during the last
50 years, in particular through the efforts of H. Wielandt and his followers. The
book [29] is commonly regarded nowadays as the standard source in the area.
The concept of an invariant relation of a permutation group (G,Ω) was coined
and used in [105]. We refer to [67] and [37] for an introduction to this line of
Wielandt’s methodology.

Invariant binary relations play a central role in our presentation. For a given
permutation group (G,Ω) each such relation can be represented as a union of
minimal invariant binary relations. The latter ones, following Wielandt, are
called 2-orbits of (G,Ω). The set 2 − orb(G,Ω) of such minimal relations will
be the subject of our careful attention for a number of concrete permutation
groups.

Association schemes are introduced as a combinatorial axiomatization of
significant regularity properties of the 2-orbits of permutation groups. For each
transitive permutation group (G,Ω) a pair (Ω, 2−orb(G,Ω)) provides a model of
an association scheme; each such model is called a Schurian association scheme,
cf. [37]. Non-Schurian association schemes are a subject of special interest
because they, in a sense, are not predictable on a purely group-theoretical level.
The smallest example of a non-Schurian scheme exists on 15 points. The classic
book [2] still is an excellent source for this area.

A more general concept of a coherent configuration ([47], [14]) appears as
a combinatorial generalization of an arbitrary permutation group, strictly in
the same manner as an association scheme relies on a transitive permutation
group. Both coherent configurations and association schemes may and should
be considered via the impact of the two languages of relations and matrices on
each other. The matrix analogue of a coherent configuration, a coherent algebra,
see [48], is a matrix algebra which is closed with respect to Schur-Hadamard
multiplication and transposition and contains the identity matrix I and the all-
ones matrix J . Each coherent algebra M (regarded as a vector space) has a
unique standard basis of (0, 1)- matrices. These matrices are adjacency matrices
of basic graphs of M.

To each coherent configuration M, and in particular, to each association
scheme, a few natural symmetry groups are defined, namely the automorphism
group Aut(M), the color automorphism group CAut(M), and the algebraic
automorphism group AAut(M). A few recent papers such as [64], [65] may
assist the reader to digest corresponding definitions and to get a helpful context
regarding their applications.

We assume from the reader a modest acquaintance with simple concepts
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from graph theory and the ways how diverse kinds of symmetry of graphs are
investigated with the aid of finite permutation groups. The starting context
is presented in Chapters 1,2 of [73]; also references in this book may be quite
helpful.

In fact, the interplay between graphs and algebra, on which we rely in our
paper, during the last few decades was consolidated in what is now called “Al-
gebraic graph theory” (briefly AGT). The classic book [4] and the modern
textbook [43] as well as the encyclopedic monograph [10], are all highly rec-
ommended guides.

Paying enough attention to the presentation of the subject of AGT, we ad-
mit that this paper, according to its genre and audience, is mainly about com-
puter experimentation in AGT. For this purpose we are using a few computer
packages, mostly COCO ([36], [37]) and GAP ([42]) with its extension package
GRAPE ([98]) which relies on nauty ([89]). Again, we refer to our recent publi-
cations, e.g. to [64], [68], [66] for the description of the computer algebra tools
used and discussions of the main features of computer algebra experimentation
in the areas of coherent configurations and association schemes.

3 Double covers

The operation of a double cover of a graph plays an essential role in our pre-
sentation. Below we provide all necessary definitions and illustrating examples
as well as discuss properties of this operation. We warn the reader about a
possible inconsistency of terminology between the formal definitions which are
given below and those sometimes used in the graph theoretical literature. Our
main definition strictly follows the one from [55].

Definition 3.1. Let ∆ = (V,R) be a directed graph. Define a new undi-
rected graph Γ = (V (Γ), E(Γ)), such that V (Γ) = V × {1, 2}, E(Γ) =
{{(x, 1), (y, 2)}|(x, y) ∈ R}.

We will call the graph Γ the incidence double cover (briefly IDC) of ∆.
Remark. Note that in the abbreviation IDC the letter I pretty well stands

also for both Iofinova and Ivanov. While the graph ∆ is considered as a directed
graph, the resulting graph Γ is always undirected. In the case of an undirected
graph ∆ each edge {x, y} of ∆ should be substituted by the pair of opposite
arcs {(x, y), (y, x)}. For a particular case when the graph ∆ is undirected the
IDC construction is usually called the standard double cover. Note that the
same name was used also in [55]. Many authors however use this constructions
exclusively for undirected graphs. Moreover, if the initial graph ∆ is directed,
it is sometimes automatically substituted by its underlying undirected graph ∆
with E(∆) = {{x, y}|(x, y ∈ R}. The suggested terminology allows us to avoid
any misunderstandings which may occur in the course of consideration of double
covers.

A number of simple examples presented below will hopefully provide to the
reader a helpful context. Each time we present diagrams of a graph ∆ and its
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corresponding Γ = IDC(∆).

A few additional remarks about the graphs presented are in order. A directed
edge is not a regular graph, and neither is its cover. All other graphs ∆ in the
examples are regular of valency k, and the corresponding graph Γ is also regular
of valency k. Covers of directed and undirected triangles clearly have different
valency and are therefore different. The cover of quadrangle is a disconnected
graph.

The tournament P (7) has as its vertex set the elements of the finite field Z7.
There is an arc (x, y) in P (7) if and only if y−x is a non-zero square in Z7, that
is y − x ∈ {1, 2, 4}. The notation of vertices 0, . . . , 6 and 7, . . . , 13 in part (g)
for the graph Γ corresponds to the pairs (0, 1), . . . , (6, 1) and (0, 2), . . . , (6, 2).

The automorphism group for all graphs, except those in case (g), are easily
comprehended by visual observations. In cases (a) and (b) we get |Aut(Γ)| =
4 · |Aut(∆)|, while |Aut(∆)| = 1 and 2, respectively. In case (c) |Aut(∆)| = 3,
|Aut(Γ)| = 3! · 23 = 48. In case (d) |Aut(∆)| = 6 and |Aut(Γ)| = 12. in case (e)
|Aut(∆)| = 8, |Aut(Γ)| = 2 · 82 = 128.

In case (f) |Aut(∆)| = 10 , |Aut(Γ)| = 20. Finally, deeper reasonings are
required in order to check that in case (g), Aut(∆) is the Frobenius group F21

of order 21, while Aut(Γ) ∼= PSL(3, 2) : Z2 is a group of order 336.

Proposition 3.1. Let ∆ be a graph, Γ = IDC(∆). Then

(i) if ∆ is a regular graph of valency k, then Γ is also regular of the same
valency k;

(ii) if ∆ is a bipartite graph then Γ is disconnected;

(iii) if ∆ is an undirected graph then the group Aut(Γ) contains as a subgroup
the direct product Aut(∆)× Z2.

Proof. Straightforward, see e.g. [111].

Note that, in our examples for undirected graphs in cases (d) and (f) we
get the equality Aut(Γ) = Aut(∆) × Z2, while in cases (b) and (e) the group
Aut(∆)× Z2 appears as a proper subgroup of Aut(Γ).

The question of when the equality Aut(Γ) = Aut(∆) × Z2 holds for an
undirected graph ∆ turns out to be of independent interest. Following [87], we
will call such a graph ∆ a stable graph. Note that while the original definition
in [87] was given only for undirected graphs, in this paper it is (in a sense) also
extended to directed graphs. According to the above examples, the triangle and
the pentagon are stable graphs.

In recent years interest in the investigation of stable graphs has increased;
see the short discussion in Section 15.

An alternative way to explain the construction of double cover goes through
the use of matrices. For an arbitrary graph (directed arcs and loops are al-
lowed) ∆, denote by A(∆) its adjacency matrix. Clearly, any arbitrary square
symmetric (0,1)-matrix is the matrix A(∆) for a suitable graph ∆. We however
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Example 3.1. (a) directed edge

1 2//

(1, 1)

(2, 1)

(1, 2)

(2, 2)
∆ Γ

(b) undirected edge

1 2

(1, 1)

(2, 1)

(1, 2)

(2, 2)
∆ Γ

(c) directed triangle

1 2

3

//

��

WW (1, 1)

(2, 1)

(3, 1)

(1, 2)

(2, 2)

(3, 2)
∆ Γ

(d) undirected triangle

1 2

3

(1, 1)

(2, 1)

(3, 1)

(1, 2)

(2, 2)

(3, 2)
∆ Γ

(e) quadrangle

1 2

34

(1, 1)

(4, 2)

(2, 2)
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(1, 2)

(4, 1)

(2, 1)

(3, 2)
∆ Γ

Figure 1: Small IDC covers
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(f) pentagon
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(g) tournament P (7)

0

1

2

34

5

6 ''

��

��

��

��

ww

��ww

gg

oo

gg

SS

\\

SS BBKK

BB

//

77

//

��

1

2

3

45

6

0

7

8

9

10

11

12

13

∆ Γ

Figure 2: Small IDC covers (cont.)
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may interpret the matrix A = A(∆) as the incidence matrix I(S) of a suitable
incidence structure S. Here rows of A = (aij) correspond to points of S, while
columns correspond to blocks of S. An element aij is equal to 1 if and only if
the point defined by row i is incident to the block defined by row j. The result
is that we consider the incidence (Levi) graph of the incidence structure S (cf.
[21]). Note that the number of points and blocks in S is equal. Such incidence
structures are called configurations, if the incidence graph happens to be regular
and does not contain quadrangles.

It seems that the proposed mode of correspondence between graphs and
incidence structures was for the first time considered in [30]. A helpful survey
of general properties of this correspondence is provided in [13]. Note that this
explanation justifies the name “incidence double cover”.

Let us now take a new glance at part (g) of Figure 3.1. Here we are coming
from the Paley tournament P (7) to its adjacency matrix A, interpreting it as
the incidence matrix of the structure with the point set P = [0, 6] and the
block set B, the set B consists of the following seven 3-element subsets of P :
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {0, 4, 5}, {1, 5, 6}, {0, 2, 6}, {0, 1, 3} which are labeled
by symbols 7, 8, . . . , 13 respectively. The reader, of course, will recognize the
diagram of Γ as the Levi graph of the famous Fano plane. This graph Γ is
usually called the Heawood graph, see e.g. [46]. Clearly, the group Aut(Γ) is
much larger then the groupAut(∆). Note that both groups will play a significant
role further along this paper.

4 Semisymmetric graphs

Recall that an undirected graph Γ = (V,E) is called semisymmetric if it is
regular (of valency k) and Aut(Γ) acts transitively on E and intransitively on
V .

The proposition below is attributed by F. Harary to Elayne Dauber; its proof
appears in [46] and [73].

Proposition 4.1. A semisymmetric graph Γ is bipartite with the partitions
V = V1 ∪ V2, |V1| = |V2|, and Aut(Γ) acts transitively on both V1 and V2.

Interest in semisymmetric graphs goes back to the seminal paper [40], where
they were called admissible graphs. The wording “semisymmetric” was sug-
gested in [62].

Example 4.1 (The semisymmetric Folkman graph on 20 vertices). Let V1 ={
[0,4]

2

}
be the set of all 2-element subsets of the 5-element set [0, 4]. Let V2 =

[0, 4]×{1, 2}. Define V = V1∪V2, E = {{{a, b}, (a, i)}|a, b ∈ [0, 4], i ∈ {1, 2}, a 6=
b}. It is easy to check that the direct product of the symmetric group S5 with S2

acts transitively on the sets V1,, V2, E. Moreover, this is the full automorphism
group of the resulting graph F = (V,E). (For the proof it is helpful to notice
that Aut(F) acts primitively on V1 and imprimitively on V2.)
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At first, interest in semisymmetric graphs was sustained by the representa-
tives of the Soviet school of graph theory. The paper [102] immediately attracted
the interest of the researchers from the USSR to the number of open questions
about semisymmetric graphs which were posed by Folkman in [40] and repeated
in [102]. A general method to construct semisymmetric graphs with the aid of
the multi-hypergraphs was suggested by V. K. Titov in [101]. Below we present
the semisymmetric graph on 24 vertices, constructed by Titov.

Example 4.2. Let V1 = [0, 3] × {1, 2, 3}, V2 =
{

[0,3]
2

}
× {4, 5}, V = V1 ∪ V2,

E = {{(x, i), ({x, y}, j)}|x, y ∈ [0, 3], x 6= y, i ∈ {1, 2, 3}, j ∈ {4, 5}}. We suggest
that the reader checks that the resulting graph T = (V,E) on 24 vertices and
valency 6 is a semisymmetric graph with |Aut(T )| = 213 · 35. Note that the
group Aut(T ) may be easily described as a generalized wreath product (in the
sense of [109]) of the group S4 acting on orbits of lengths 4 and 6 with groups
S3 and S2 respectively. Here |Aut(T )| = 4! · (3!)4 · (2!)6.

As usual, we refer to Section 15 for more information about the investigation
of semisymmetric graphs.

Following [55] let us call a semisymmetric graph Γ = (V,E), V = V1 ∪V2, of
parabolic type if the stabilizers H1, H2 of vertices x ∈ V1 and y ∈ V2 respectively
are not conjugate in the symmetric group Sym(V ). (Note that we slightly
modify the original definition in [55].) Otherwise the graph Γ will be called
of non-parabolic type. In a more naive wording, a semisymmetric graph Γ of
parabolic type belongs to an “easy” case of such graphs. This means that one
can distinguish vertices x, y with the aid of simple arguments, using suitable
numerical or structural invariants of the vertices. The above two examples
clearly serve as simple representatives of the easy case.

It turns out that the semisymmetric Ljubljana graph L on 112 vertices (see
Section 6) is one of the smallest examples of the non-parabolic case: here both
groups H1 and H2 are cyclic groups of order 3, which are conjugate in S112. As a
result, the proof of the fact that L is indeed semisymmetric inherently becomes
a more sophisticated task in comparison, e.g. with corresponding proofs for the
graphs F and T above. For the purpose of investigation of such a case we will
use techniques of incidence double covers in conjunction with the ideas which
were introduced in [55].

Let Γ be a bipartite graph with partition V = V1∪V2 of its vertices. In what
follows we assume that Γ is an edge-transitive regular graph of valency k. Then
it follows from Proposition 4.1 that the group Aut(Γ) either acts transitively
on V or acts intransitively with two orbits V1 and V2 of equal length. Let us
denote by Aut−(Γ) the subgroup of Aut(Γ) which stabilizes each set V1 and V2

separately. Then clearly [Aut(Γ) : Aut−(Γ)] = 1 or 2, depending on whether
Aut(Γ) acts on V transitively or intransitively, respectively.

Now let G be a finite group and H1 and H2 subgroups of G of equal index k.
Denote by Γ(G,H1, H2) the bipartite graph whose vertices are cosets of H1 and
H2 in G and vertices H1g1 ans H2g2 are adjacent if and only if H1g1∩H2g2 6= ∅.
We will call Γ the coset graph of G with respect to the pair of subgroups H1,
H2. The presentation below follows the line which was established in [55].
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Lemma 4.2. 1. The edges of the graph Γ(G,H1, H2) bijectively correspond
to the cosets of H1 ∩H2 in G.

2. The group G acts transitively on the edge set of the graph Γ(G,H1, H2).

3. Graph Γ(G,H1, H2) is connected if and only if G = 〈H1, H2〉.

4. If G = 〈H1, H2〉 then each subgroup N ≤ H1 ∩ H2, which is normal
in both H1 and H2 is also normal in G, and acts trivially on the graph
Γ(G,H1, H2).

In what follows it is convenient to assume that such a proper subgroup N
does not exist in G, in other words, G acts faithfully on the graph Γ(G,H1, H2).

Lemma 4.3. Let G ≤ Aut(Γ) act edge- but not vertex-transitively on Γ. Let
x ∈ V1, y ∈ V2, {x, y} ∈ E(Γ), H1 = Gx, H2 = Gy. Then Γ is isomorphic to
Γ(G,H1, H2).

By a triple of groups (G,H1, H2) we now mean each triple such that G =
〈H1, H2〉. Two triples (G,H1, H2) and (G′, H ′1, H

′
2) are called equivalent if the

corresponding two coset graphs are isomorphic. Clearly an equivalence class of
triples has a unique (up to isomorphism) maximal element which is defined by
Aut−(Γ) and two stabilizers of the ends of an arbitrary edge in Γ, where Γ is
isomorphic to the (isomorphic) coset graphs of the two triples.

Let us call the triple (G,H1, H2) embeddable into the triple (G′, H ′1, H
′
2) if

there exists a monomorphism φ : G→ G′ such that φ(Hi) = H ′i, i = 1, 2.

Lemma 4.4. Let the triple (G,H1, H2) be embeddable into (G′, H ′1, H
′
2) and

moreover let Hi = G ∩ H ′i for i = 1, 2. Then the two triples are equivalent if
and only if

[G : G′] = [H ′1 ∩H ′2 : H1 ∩H2].

Corollary 4.5. If triples (G,H1, H2) and (G′, H ′1, H
′
2) are equivalent then

[G : H1 ∩H2] = |E(Γ(G,H1, H2))| = |E(Γ(G′, H ′1, H
′
2))| = [G′ : H ′1 ∩H ′2].

Lemma 4.6. Let Γ be a bipartite graph as above, G = Aut−(Γ), {x, y} ∈ E(Γ),
and H1 and H2 the stabilizers of x and of y in G, respectively. Then the following
two conditions are equivalent:

(i) the graph Γ = Γ(G,H1, H2) is vertex-transitive;

(ii) there exists an overgroup D of G, containing G as a subgroup of index 2,
such that (Hd

1 , H
d
2 ) = (H2, H1) for some d ∈ D (here Hd = d−1Hd).

Let us now combine consideration of coset graphs with the construction of
IDC.

Lemma 4.7. Let the triple (G,H1, H2) be maximal in its class. Then the
following two conditions are equivalent:

10



(i) the graph Γ(G,H1, H2) is the standard double cover of an undirected graph
∆ and G acts transitively on both E(∆) and V (∆);

(ii) Aut(Γ(G,H1, H2)) = G× 〈τ〉, τ2 = 1.

Lemma 4.8. Let (G,Ω) be a transitive permutation group and let R be its
connected antisymmetric 2-orbit. Assume that (x, y) ∈ R, H1 = Gx, and H2 =
Gy. Assume in addition that the triple (G,H1, H2) is maximal in its equivalence
class. Then exactly one of the following two possibilities holds:

(i) Γ(G,H1, H2) is a semisymmetric graph;

(ii) There exists a permutation group (D,Ω) in which (G,Ω) is a subgroup of
index 2 such that (xd, yd) = (y, x) for some (x, y) ∈ R and d ∈ D.

Now we may formulate our main result in this section.

Theorem 4.9 (Criterion of Iofinova-Ivanov). Let (G,Ω) be a 2-closed permu-
tation group. Assume R is an antisymmetric 2-orbit of (G,Ω), and ∆ = (Ω, R)
is a directed graph. Let Γ = IDC(∆). Assume that the graph Γ is a connected
semisymmetric graph such that Aut(Γ) ∼= G. Then

(i) ∆ is connected;

(ii) ∆ is not bipartite;

(iii) ∆ and ∆t are not isomorphic, here ∆t = (Ω, Rt), Rt = {(y, x)|(x, y) ∈ R};

(iv) Aut(∆) = G.

Proof. The condition (i) is evident. The condition (ii) follows from Proposition
3.1(ii).

Assume that ∆t ∼= ∆. Then we check that there exists an isomorphism
φ : ∆t → ∆ such that φ2 ∈ G. Define D = 〈G,φ〉 and check that (D,Ω)
is an overgroup of G, and G has index 2 in D. Note also that according to
the condition Aut(Γ) = G the triple (G,H1, H2) is maximal in its class, where
H1 and H2 are the stabilizers in G of the ends of an arc (x, y) ∈ R. Now to
prove (iii) use Lemma 4.7. The proof of (iv) follows from the fact that if G is a
proper subgroup of G′ = Aut(∆) then the triple (G′, H ′1, H

′
2) for suitably defined

H ′1, H ′2 will be equivalent to (G,H1, H2), and thus G′ ≤ Aut(Γ), providing a
contradiction with the assumption of the theorem.

Remark. The slight difference in arguments which are used in [55], relies on
the additional assumption of the primitivity of the group (G,Ω) in [55]. This is
why we were not able to provide a stronger result for the necessary and sufficient
condition of the incidence double cover to be a semisymmetric graph.
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5 Nikolaev graph N
Let us now consider the graph N , which was discovered on October 30, 1977 at
Nikolaev (Ukraine). It is the first member of an infinite family of semisymmetric
graphs. The result was published in [62], where the term “semisymmetric” was
coined. The main motivation of [62] was to provide an affirmative answer to a
question of Folkman [40] about the existence of a semisymmetric graph with v
vertices and valency k, such that gcd(v, k) = 1. Indeed, for the graph N we get
gcd(112, 15) = 1.

The construction of N = (V,E) is as follows:
Let the set of vertices V = V1 ∪ V2, V1 = {(a, b)|a, b ∈ [0, 7], a 6= b} and

V2 = {X ⊆ [0, 7]||X| = 3}. The edge set E of N is E = {{(a, x), {a, b, c}}|x 6∈
{a, b, c}}.

Proposition 5.1. (i) N is a semisymmetric graph with 112 vertices and va-
lency 15;

(ii) Aut(N ) ∼= S8.

Proof. Clearly, N is a regular graph of valency 15, and the symmetric group
S8 acts transitively on the sets V1, V2 and E. Let G = Aut(N ). Regarding
N as the incidence graph of a symmetric incidence structure S, let us consider
the point graph P(S) and the block graph B(S) defined on the sets V1 and V2

respectively. Easy arguments reveal that the automorphism groups of the graphs
P(S) and B(S) are imprimitive and primitive respectively. Therefore graph
N is indeed semisymmetric. Consideration in addition of the 2-closure of the
induced symmetric group S8, acting on the set

{
[0,7]

3

}
, cf. [60], [61], [35], shows

that Aut(B(S)) = S8. Therefore, finally we get also that Aut(N ) ∼= S8.

In fact, the proof of Proposition 5.1, outlined above, works for any arbitrary
member of the infinite series of semisymmetric graphs introduced in [62]. Note
that the idea of the proof, which was actually provided in [62], is of a more
elementary nature, basing itself entirely on the counting of simple combinatorial
invariants of the vertices in the graph N . We refer to the Section 16 for an
additional discussion.

Thus the graph N serves as a nice example of an “easy” case of semisym-
metric graphs: here, as in Example 4.1, the fact that Aut(N ) acts intransitively
on the set V can be justified by simple arguments of a combinatorial or group-
theoretic nature. In what follows, the part V1 (V2) will be called left (right)
part of the vertex set V of the graph N , respectively.

6 Ljubljana graph L
The number three is the smallest value of the valency of a semisymmetric graph.
This implies a natural interest in the investigation of the smallest cubic semisym-
metric graphs. Two such small graphs were known for a long while.

12



The Gray graph has 54 vertices, its automorphism group has order 1296 and
is isomorphic to the exponentiation S3 ↑ S3 of symmetric group of degree 3 (we
use terminology and notation as in [37]). The construction of the Gray graph is
quite simple. Start with the Hamming graph H(3, 3): the vertices are ternary
sequences of length 3, two sequences are adjacent iff they differ in exactly one
position. This graph H(3, 3) has valency 3 and diameter 3, it is a distance
transitive graph. There are 27 natural cliques of size 3, which are defined in
a unified manner: fix values of two prescribed coordinates while the remaining
one runs through all three possibilities. Points and cliques define a symmetric
configuration 273, the incidence graph of which is the Gray graph G. Simple
arguments confirm that Aut(G) = S3 ↑ S3 and G is indeed a semisymmetric
graph.

The graph G was presented for the first time in [7] (see also [8]), where
its authorship was attributed to Dr. Marion C. Gray (1932), though Bouwer
rediscovered it independently. Since that time the graph G was the subject
of diverse investigations, see e.g. [83], [84], [20], [95]. A few times it was
proved (with and without the use of a computer) that G is the smallest cubic
semisymmetric graph. The authors’ (MK and MZA) own view of the graph G
and some of its properties is reflected e.g. in [66].

The second smallest cubic semisymmetric graph is the biprimitive graph on
110 vertices which was discovered by A. A. Ivanov [52]. This graph J provides an
answer to another question posed by Folkman [40], concerning the existence of
a semisymmetric graph of a prime valency which does not divide the number of
vertices. There are a few different (though rather close) ways to define the graph
J. First, consider the group PSL(2, 11) of order 660. It has subgroups H1

∼= A4

and H2
∼= D6, both of index 55, such that H1∩H2

∼= E4. Therefore PSL(2, 11)
appears as an amalgam 〈A4, D6, E4〉. The vertices of J are cosets of A4 and D6

in PSL(2, 11), while edges are cosets of E4. Note that Aut(J) ∼= PGL(2, 11) is
a group twice larger than PSL(2, 11).

Alternative description of the graph J (which was also outlined in [52]) relies
on the use of an auxiliary structure, namely the Paley design P(11) with the
parameters (v, k, λ) = (11, 5, 2). In this interpretation the vertices of J are
55 flags of P(11) and 55 “double flags”, that is 2-element subsets of points
belonging to the same λ = 2 blocks of D. The adjacency is a naturally defined
“reverse” inclusion of a flag into a double flag (see [52] for details).

Note that the graph J appears also in [55] as the smallest case in the list of
five biprimitive cubic semisymmetric graphs. Like all other graphs in the list, J
is of a parabolic type in the sense of [55].

In 2001, during a brief visit of M. Conder to Ljubljana, he constructed
together with Slovenian colleagues a cubic semisymmetric graph on 112 vertices,
which was described as a regular Z3

2-cover of the Heawood graph. According to a
suggestion of Conder, the graph was called the Ljubljana graph and denoted by
L. A computer based search showed that L is the unique cubic semisymmetric
graph on 112 vertices.

In fact, already in [8] one finds a citation of a private communication of R.
M. Foster, who found a cubic semisymmetric graph on 112 vertices with girth
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10. However, Foster did not communicate to Bouwer any description of his
graph. Thus there was an evident reason to attribute the suggested name, due
to a lucky reincarnation of L which was achieved in the capital of Slovenia. A
detailed report about the graph L was published [19]. Soon the suggested name
became well known, see e.g. [76].

A more involved computer search (announced already in [19]) revealed that
the graph L is in fact the third smallest cubic semisymmetric graph (after the
graph G and J). Taking into account that the original description of L in [19]
was computer dependent (contrary to the known self-contained descriptions of
G and J), the graph L soon became the subject of further considerations and
discussions, see e.g. [79], [9], [77], [20]. Note that in [20] cubic semisymmetric
graphs are considered in a much wider context, relying on a beautiful impact of
diverse techniques from group theory, topological graph theory and computer
algebra.

An interesting paradox was already mentioned in [77]: The graph L was
studied in a series of papers by I. J. Dejter and his coauthors [5], [11], [22],
[23], which were not known to the authors of [19] in year 2001. We adopt, in
this paper, the existing wording “Ljubljana graph”. As sometimes happens in
mathematics, some names seem luckier than others, and under this name this
graph is now enjoying a new wave of attention.

The paper [19] indeed provides a lot of interesting information about the
graph L.

The graph is defined in an evident form with the aid of voltage assignments;
cycles of length 10 and 12 are completely classified; L is proved to be Hamilto-
nian and thus its LCF code (in the sense of [41]) is provided. The group Aut(L)
of order 168 is discussed together with its action on L and some subgroups.
Moreover, it is shown that the edge graph L(L) of L is a Cayley graph over
Aut(L).

We think, however, that there is still an unexploited potential to reconsider
the graph L once more together with the group Aut(L), paying special attention
to a few association schemes and coherent configurations naturally related to L,
as well as to the embeddings of L into the graph N .

7 A master association scheme on 56 points

In our attempts to get a new understanding of the graph L we started from the
group G = AΓL(1, 8) := {x 7→ axσ + b|a ∈ F ∗8 , b ∈ F8, σ ∈ Aut(F8)}.

Clearly, |G| = 8 ·7 ·3 = 168 and G acts naturally on the set of elements of the
Galois field F8 as a 2-transitive permutation group. Identifying F8 with the set
[0, 7], we use the representation G = 〈g1, g2, g3〉, where g1 = (1, 2, 3, 4, 5, 6, 7),
g2 = (0, 1)(2, 4)(3, 7)(5, 6), g3 = (2, 3, 5)(4, 7, 6), as it appears in [97].

G is a subgroup of S8, therefore there is a sense to consider again the induced
action of G on the same set V = V1 ∪ V2, as it was defined in Section 5.

With the aid of a computer it was discovered that in this way we obtain
exactly 8 distinct copies of the same (up to isomorphism) graph L, which are
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invariant with respect to the induced intransitive action (G,V ). Each such copy
appears as a spanning subgraph of a suitable copy of N .

The stabilizer of an arbitrary vertex in L has order 3; thus both stabiliz-
ers are isomorphic to the cyclic group Z3. Therefore, in comparison with the
“easy” case of N , this vision of L stresses that it belongs to a more difficult
case. In the following we aim to interpret the graph L (as well as its embed-
dings to N ), starting from the association scheme formed by the 2-orbits of the
transitive permutation group (G,V1). At the beginning we will essentially rely
on the analysis of some computations fulfilled with the aid of computer algebra
packages.

Thus let now Ω = V1 = {(x, y)|x, y ∈ F8, x 6= y} and let (G,Ω) be the
induced transitive action of G = AΓL(1, 8) on Ω of degree 56.

Proposition 7.1. The permutation group (G,Ω) has rank 20.

Proof. The rank of a transitive permutation group by definition is equal to the
number of orbits of the stabilizer of an arbitrary point. The stabilizer of any
point from Ω is similar to the induced cyclic group (Z3,Ω), Z3 = 〈g̃3〉, where g̃3
denotes the action of g3 on Ω. With the aid of the orbit counting lemma (CFB
lemma in [67]), we obtain for the rank r of (G,Ω) that r = 1

3 (
(
8
2

)
+2·2) = 20.

Using COCO in conjunction with GAP, we construct and investigate our
master association scheme M = (Ω, 2− orb(G,Ω)).

COCO returns a list of representatives of the 20 2-orbits, finds length of the
2-orbits, calculates the intersection numbers of M, enumerates all mergings of
M and provides the order of the automorphism group of each merging (together
with the rank and subdegrees of each group). GAP allows us to get some extra
information, in particular about the basic graphs of M. The first part of the
results obtained is presented below.

Proposition 7.2. (i) There are 8 pairs of antisymmetric basic relations of
valency 3 in M.

(ii) All these basic graphs are not bipartite.

(iii) 6 pairs of basic graphs are connected.

(iv) The automorphism group of each of those 6 · 2 = 12 connected (di-)graphs
is (G,Ω).

(v) In each pair of connected basic graphs, opposite graphs are not isomorphic.

According to the criterion, presented in Section 4, there is now an evident
sense to construct the incidence double cover on 112 vertices, starting from each
pair {R,Rt} of connected antisymmetric basic graphs of valency 3. Clearly the
IDC of R and Rt are isomorphic (undirected) graphs of valency 3. With the
aid of GAP we distinguish the 6 pairs into 4 “good” pairs, which all provide
isomorphic copies of L and 2 “bad” pairs, which provide a vertex transitive
disconnected graph, isomorphic to 8 copies of the Heawood graph.
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i Rep Pair Val Con Rt R∗ |Aut| cl cl v Aut(v) rank #

0 0 (0,1) 1 F 0 0 56! 1 1 S56 o S2 2
1 1 (0,2) 3 F 5 7 8! · 218 2 2 S8 o F21 4 35
2 2 (1,0) 1 F 2 2 28! · 228 3 1 S56 o S2 3 48
3 4 (1,4) 3 T 12 4 168 4 2 S8 o F21 20
4 5 (2,0) 3 T 8 3 168 4 2 S8 o F21 20
5 6 (0,4) 3 F 1 9 8! · 218 2 2 S8 o F21 4 35
6 9 (2,5) 3 T 17 14 168 5 3 G 20
7 11 (4,1) 3 F 9 1 8! · 218 2 2 S8 o F21 4 39
8 12 (1,2) 3 T 4 12 168 6 2 S8 o F21 20
9 14 (2,1) 3 F 7 5 8! · 218 2 2 S8 o F21 4 39
10 17 (3,6) 3 T 11 16 168 7 3 G 20
11 18 (4,6) 3 T 10 13 168 8 3 G 20
12 20 (4,0) 3 T 3 8 168 6 2 S8 o F21 20
13 23 (5,2) 3 T 16 11 168 8 3 G 20
14 29 (4,7) 3 T 15 6 168 5 3 G 20
15 30 (7,5) 3 T 14 17 168 9 3 G 20
16 32 (5,7) 3 T 13 10 168 7 3 G 20
17 39 (6,3) 3 T 6 15 168 9 3 G 20
18 43 (2,4) 3 F 18 18 14! · (4!)14 10 4 S14 o (S2 × S4) 3 49
19 44 (4,2) 3 F 19 19 7! · 487 11 4 S14 o (S2 × S4) 5 24

Table 7.1: 2-orbits of M and their covers

To explain better the observed phenomena, we further consider the normal-
izer NS56((G,Ω)) of G in S(Ω), which in this case coincides with the group
CAut(M).

The second part of the corresponding computer aided results is presented
below.

Proposition 7.3. (i) NS56((G,Ω)) ∼= G× Z2 and has order 336.

(ii) The quotient group NS56((G,Ω))/G acts on the 16 antisymmetric 2-orbits
as a group of order 2.

(iii) Each “good” 2-orbit R is mapped to a 2-orbit R∗ from another “good” pair
under this action.

(iv) Each “bad” 2-orbit is mapped to a 2-orbit from another “bad” pair.

Note that the action of the direct factor Z2 on Ω corresponds to the permuta-
tion which transposes each pair (x, y) with (y, x) for distinct elements x, y ∈ F8.

For the reader’s convenience, the main numerical results related to the above
propositions are presented in Table 7.1. Here first we list number i of class Ri,
a representative x ∈ Ω such that (0, x) ∈ Ri, and a description x = (a, b),
a, b ∈ F8. In the last column of the table we refer to the number of a merging
of M which is the coherent closure of Ri, according to the list of all mergings,
which appears in Supplement A.
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Note that we get 11 isomorphism classes of basic graphs of M, while 4
such classes form the 4 “good” pairs. The IDC covers split into 4 isomorphism
classes, described in column “cl v”. The class 3 provides the graph L. Again,
the information in the last two columns of the table is relevant to coherent
closure of basic graphs (which in most cases coincides with M). F21 denotes the
Frobenius group of order 21 and degree 7.

8 Embeddings of L into N
We wish now to understand better all possible embeddings of the graph L into
N . Note that the union of each “good” pair of relations R and R∗ is again
an antisymmetric relation (of valency 6). Moreover, each such relation is a
2-orbit of the group G̃ = CAut(M) ∼= AΓL(2, 8) × Z2. Therefore there is a
sense to consider also an association scheme M̃, resulting from the group G̃. In
principle, M̃ appears as a merging (#1)of M. Nevertheless, for us it was more
convenient to investigate M̃ independently, using again COCO, and constructing
the scheme of 2-orbits of G̃.

We obtain that (G̃,Ω) has rank 12 with 4 pairs of antisymmetric 2-orbits of
valency 6. For each such 2-orbit we again construct its IDC; for two pairs the
resulted cover turns out to be a semisymmetric graph on 112 vertices of valency
6, the automorphism group of which is the group G̃. We prefer to call this graph
of valency 6 the natural double Ljubljana graph and denote it by NL.

Again GAP is used in conjunction with COCO to obtain our next result.

Proposition 8.1. (i) The union of edges from IDC L of a “good” relation
R and L∗ of R∗ provides a semisymmetric double Ljubljana graph NL of
valency 6 on 112 vertices.

(ii) Aut(NL) = G̃.

(iii) NL appears as an incidence double cover of the antisymmetric 2-orbit
R ∪R∗ of the group G̃ = CAut(M).

(iv) Each graph NL (as well as each graph L) has a unique extension to a copy
of graph N of valency 15 which is invariant with respect to (G,Ω).

Thus we have managed to explain more clearly the essence of the embeddings
of a “difficult” case of L into an “easy” case of N .

Since Aut(L) respects this embedding, we obtain a new proof of the fact
that L is a semisymmetric graph.

It is clear that at this stage all the results which we have presented depend
essentially on the use of a computer. In next sections we aim to remove, at least
in part, such dependence. For this purpose, additional combinatorial structures
will be introduced and investigated.
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Figure 3: Paley tournament P (7) with isolated vertex

9 The Ljubljana configuration

As was mentioned, each semisymmetric graph may and should be regarded as
the Levi graph of a symmetric incidence structure (very frequently it happens
to be a configuration), which is not self-dual. Let C and CT be two such con-
figurations, defined by the graph L. The diagrams of this pair of configurations
are depicted in Figure 5 of [19]; they are realized as geometric configurations of
points and lines in the Euclidean plane.

Below we develop an alternative, combinatorial approach to the representa-
tion and investigation of the two 563 Ljubljana configurations and exploit its
advantages.

First, let us consider a copy of a Paley tournament P (7) with the vertex set
[1, 7] and isolated vertex 0, as it is depicted in Figure 3.

It is easy to check that Aut(P (7)) = 〈g1, g3〉 (we use notation from Section
7) is a Frobenius group F21 of order 21 and degree 7. Recall that this copy of F21

is simultaneously the stabilizer of the point 0 in the group (G, [0, 7]) = (G,F8).
Consider now the orbit O of this graph P (7) under the action of (G,F8).

This orbit O contains 8 copies of P (7), where each element from [0, 7] appears
exactly once as an isolated vertex. For each copy of P (7) inO and for each vertex
x of P (7) we get the induced subgraph T (x), generated by the out-neighbors of
x. Clearly, T (x) is a directed triangle. Denote by B the collection of all such
triangles, T (x). We are ready to present our first construction.

Let us identify a tuple (x, y) in Ω with vertex y of the copy of P (7) that has
x as an isolated point. Here Ω is defined as in Section 7.

Construction 9.1. Consider the incidence structure S = (Ω,B) with inclusion
in the role of incidence relation.

Proposition 9.1. (i) |O| = 8, |B| = 56, S is a symmetric 563 configuration
without repeated blocks.

(ii) Aut(S) = G.

(iii) The Levi graph of the configuration S is isomorphic to L.
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Proof. The proof of (i) is a trivial consequence of the 2-transitivity of (G,F8).
For the proof of the remaining parts, let us consider the point graph P and

the block graph B of the configuration S. Clearly, both graphs have valency 6.
Let us establish that the diameter of the point graph P is 3; for each of its

vertices there are exactly 6, 25 and 24 vertices at distance 1, 2 and 3 respectively.
We need also to prove that Aut(P) = G. In principle, it is possible to elaborate a
computer free proof, checking that each automorphism of P which fixes a vertex
(say (0, 1)) and all its neighbors in P is the identity automorphism. Practically,
we advise the use a computer at least for the simple enumeration of the above
distance-i subsets (i ∈ {1, 2, 3}) and inspection of the induced subgraphs of P.
As a corollary we get that Aut(P) ∼= (G,Ω) and therefore also Aut(S) ∼= (G,Ω).

To prove that S 6∼= ST , we consider the block graph B, revealing that it has
diameter equal to 4. (Moreover we obtain that the distance-4 set for any vertex
has cardinality 1.)

Thus, P 6∼= B and therefore S is not self-dual. This implies that the Levi
graph of the configuration S is semisymmetric.

To complete the proof, we have to decide which is the Ljubljana graph L.
Depending on this, we may then check with the aid of GAP that the Levi graph
of S is isomorphic to any of the copies of L which we have constructed above.

Otherwise, we may exploit the fact that L is unique semisymmetric graph
on 112 vertices of valency 3.

In what follows, the part P of the vertex set of the current model of L will
be called left, while the part B will be called right.

Remark. A quite surprising issue is that the copy S of the Ljubljana
configuration, defined and considered in this section, does not literally coincide
with any of the 8 copies of the configuration which appear from M via the IDC
procedure. Moreover, our group (G,Ω) 6= Aut(S), though of course, the two
groups are conjugate in S56.

We will come to the discussion of this phenomenon at the end of our paper.

10 More auxiliary structures

We are now in a position to present a new way of taking a glance at all possible
embeddings of the Ljubljana graph L into the Nikolaev graph N . With this aim
in mind, let us consider extra concepts and related combinatorial structures.

An arbitrary permutation group (H,X), according to [3], is called a geomet-
ric group if it appears as the full automorphism group of a graph or a hypergraph
with the vertex set X. Here, a hypergraph is a collection of subsets of the set
X (hyperedges) together with the entire (vertex) set X. In other words, a geo-
metric permutation group can be interpreted as the group of all symmetries of
a suitable incidence structure. Let us illustrate this concept with the aid of a
simple example.

Example 10.1. Let H = F20 = AGL(1, 5) = 〈h1, h2〉, where h1 = (0, 1, 2, 3, 4),
h2 = (1, 2, 4, 3). It is clear that H is a 2-transitive Frobenius group of order 20.
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Therefore H cannot be regarded as Aut(Σ) for a suitable graph Σ with vertex set
[0, 4]. It is easy to observe that the group H cannot also appear as the automor-
phism group of a suitable hypergraph with the vertex set [0, 4]. Nevertheless, H
is the full automorphism group of a collection of two complementary pentagons,
depicted in Figure 4.

According to [69], let us call a permutation group (H,X) a geometric group
of the second order if (H,X) is the full automorphism group of a suitable col-
lection of graphs or hypergraphs. As a simple illustration, the above example
demonstrates that the group AGL(1, 5) is indeed a geometric group of the sec-
ond order.

Let us now consider again the group G = AΓL(1, 8). This group, of course,
is not the full automorphism group of any graph. Counting orbits of (G,Ω) on
the 3− and 4−subsets of F8, and comparing the obtained numbers with the
similar ones for an overgroup AGL(3, 2) of (G,F8) in Sym(F8) (cf. e.g. [97]),
it is easy to reveal that (G,Ω) is not a geometric group (see [69], for example,
for details).

At this point let us consider again one more famous structure, namely the
projective plane F = PG(2, 2), commonly known under the name of Fano plane.
The classical picture in Figure 5(a) depicts a difference set model for F .

Indeed, the seven lines of this model are obtained from the line {1, 2, 4} via
consecutive cyclic shifts with the aid of the permutation g1 (see Section 7).

In a similar manner one more model (depicted in part (b) of the same Figure)
appears from the line {3, 5, 6}. Let us call these two models of F the standard
and the non-standard respectively. Clearly, the two models are isomorphic and
have disjoint sets of lines. Both models are invariant with respect to the same
cyclic group 〈g1〉 of order 7.

According to [18], an overlarge set O(v, k) of Steiner triple systems S(2, 3, v)
is a partition of the set of all 3-element subsets of a (v + 1)-element set into
v + 1 disjoint Steiner systems, each of type S(2, 3, v). A similar definition may
be formulated for the case of Steiner systems S(k−1, k, v). A pioneering paper,
in which such overlarge sets were investigated, is [96] (though the name itself
was coined later on).
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Figure 5: Two models of Fano plane

It was proved in [96] that up to isomorphism, there exist 11 different O(7, 3)
on 8 points, having groups of order 1344, 168, 96, 64, 48, 24, 24, 8, 8, 8, 6. Of
course, all these groups provide particular examples of geometric groups. Two
most symmetric models for O(7, 3) are of a particular interest in this text. Below
we briefly repeat the representations of these models, as they are described in
[69].

For this purpose, first we introduce a copy E8 of an elementary Abelian
group of order 8 acting regularly on the set F8 = [0, 7]. E8 contains exactly 7
involutions ti as follows: t1 = (0, 1)(2, 4)(3, 7)(5, 6), t2 = (0, 2)(1, 4)(3, 6)(5, 7),
t3 = (0, 3)(1, 7)(2, 6)(4, 5), t4 = (0, 4)(1, 2)(3, 5)(6, 7), t5 = (0, 5)(1, 6)(2, 7)(3, 4),
t6 = (0, 6)(1, 5)(2, 3)(4, 7), t7 = (0, 7)(1, 3)(2, 5)(4, 6).

Note that t1 = g2; it is easy to check that the group AGL(1, 8) = 〈g1, t1〉
has order 56, acts sharply 2-transitively on F8 and is a subgroup of index 3 in
our group G.

Construction 10.1. Let us now regard our standard (non-standard) copy of F
as a copy F0 carrying an extra isolated point 0. Then we define 7 new copies
of F as the respective images Fi := F ti0 . Finally , we denote by OS(7, 3) (or
ON (7, 3)) the collection of 8 Fano planes {F0, . . . ,F7}, depending on which
model of F (standard or non-standard) is used for the initial copy F0.

Proposition 10.1. (i) OS = OS(7, 3) is an overlarge set with the automor-
phism group Aut(OS) isomorphic to AGL(3, 2), a group of order 1344.

(ii) ON = ON (7, 3) is an overlarge set with the automorphism group
Aut(ON ) = G = AΓL(1, 8) of order 168.

Proof. A computer free proof is presented in [69], though of course, the reader
can easily confirm it with the aid of a computer, or even by routine hand com-
putations.
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Corollary. The groupG = (AΓL(1, 8),Ω) is a geometric group of the second
order.

Remark. A mysterious (at first sight) distinction between the standard and
non-standard models of F relies on the different roles of the selected copy of E8

with respect to the two prescribed models of the Fano plane.
Finally, we wish to recall one more concept which is of a definite independent

interest.
A partial geometry PG(K,R, T ) is an incidence structure in which

• each line contains exactly K points;

• each point lies on exactly R lines;

• every pair of distinct points lies on at most one common line;

• every pair of distinct lines contains at most one common point;

• for any line l and point P such that P 6∈ l, there are exactly T lines
containing P that intersect the line l.

(We are using definitions and notation exactly as it appeared in the seminal
paper by Bose [6], who coined the concept of a partial geometry.)

Bose proved in [6] that the point graph Γ of any partial geometry
PG(K,R, T ) is an SRG and derived formulas for the parameters of Γ in terms of
K, R and T . A nice survey of known partial geometries appears in two papers
by F. De Clerck [17], [16].

Partial geometries PG(8, 9, 4) (their point graph is an SRG with the pa-
rameters (120, 63, 30, 36)) have a rather striking history. A number of experts
discovered a few independent models of such a structure, which later on were
proved to be isomorphic. The long standing question about the existence of
other non-isomorphic examples was positively resolved by Mathon & Street and
independently by MK and S. Reichard (all references are available in [16]). For
a few of these new geometries the point graph is isomorphic and coincides with
the one described in [12]. Here we are especially interested in that geometry
for which the automorphism group is isomorphic to A8. A model of this A8-
geometry was suggested in [69], it is briefly repeated below.

Construction 10.2. Start with the non-standard model FN of the Fano plane
and consider the orbit P of FN under the action of A8. We get |P| =
|A8|

|PSL(2,7)| = 8!
2·168 = 120. Consider also orbits OA8

N and (OzS)A8 of non-standard
and “skew” standard overlarge sets respectively under the action of A8. Check
that |OA8

N | = 120, |(OzS)A8 | = 15. Define L = OA8
N ∪ (OzS)A8 and consider

incidence structure (P, L) with incidence defined as inclusion.

Remark. Here z = (2, 7)(3, 6)(4, 5), therefore OzS is another isomorphic
copy of OS(7, 3). Its advantage over OS is that FzS belongs to the orbit of FN
under the action of A8, so the Fano planes in the overlarge sets in (OzS)A8 are
the same as those in OA8

N .
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Proposition 10.2. (i) The incidence structure (P, L) provides a model of
PG(8, 9, 4).

(ii) The automorphism group of this partial geometry is isomorphic to the al-
ternating group A8.

Proof. A proof is available in [69], it is computer free and relies on a number of
combinatorial and group theoretical arguments.

In the next section we will try to benefit from the consideration of the pre-
sented A8-geometry at least implicitely. For this purpose let us present an
alternative vision of both kinds of overlarge sets.

The first structure in the consideration is the affine space A(3, 2) with the
vector space (Z2)3 in the role of 8 points, while 14 blocks (aka affine subspaces
of dimension 2) are the 7 subgroups of order 4 in (Z2)3 and their cosets. The
automorphism group of A(3, 2) is the group AGL(3, 2) of order 1344, it is de-
scribed as AGL(3, 2) ∼= Z3

2 : PSL(3, 2). This group acts 3-transitively on the
point set (Z2)3 of cardinality 8.

Recall that A(3, 2) is the unique (up to isomorphism) Steiner system
S(3, 4, 8), that is the set of 14 4-element blocks such that each 3-element subset
of points appears as a subset of exactly one block. For the reader’s convenience,
the list of blocks of a copy of A(3, 2) (suitable for our purposes) is given below:
{0, 1, 2, 4}, {0, 1, 3, 7}, {0, 1, 5, 6}, {0, 2, 3, 5}, {0, 2, 6, 7}, {0, 3, 4, 6}, {0, 4, 5, 7},
{1, 2, 3, 6}, {1, 2, 5, 7}, {1, 3, 4, 5}, {1, 4, 6, 7}, {2, 3, 4, 7}, {2, 4, 5, 6}, {3, 5, 6, 7}.

We invite the reader to check that the next observation holds.

Proposition 10.3. Consider the provided copy of A(3, 2), let x be an arbitrary
point. Consider all 7 blocks containing x and remove x from them. Repeat this
procedure for each x ∈ [0, 7]. Then

(i) For each x we get a copy of the Fano plane with isolated point x.

(ii) The collection of the resulting 8 Fano planes coincides with the standard
overlarge set OS(7, 3), as it was defined above.

Remark. It is clear that in the reverse procedure one gets from OS(7, 3)
a copy of S(3, 4, 8). Thus, the automorphism groups of OS(7, 3) and of A(3, 2)
indeed coincide. Therefore knowledge of one group automatically implied the
knowledge of the other. We mention that though this proposition is not used
explicitely below it, in our eyes, sheds extra light on the links between many
diverse graphs introduced in our presentation.

Now we wish also to present an alternative vision of the construction of
ON (7, 3).

Start with a prescribed copy of S(3, 4, 8) and with its group AGL(3, 2) of
order 1344. This group has 8 conjugate subgroups of order 168, each isomorphic
to our group G. Select a copy of such a group G, and observe that the group
G acts transitively on the set X of 56 4-subsets which is complementary to
the block set of our Steiner design S(3, 4, 8). Note that, for each point x, the
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stabilizer Gx of order 21 contains the unique cyclic subgroup Z7 of order 7. The
28 elements from X which contain x split into two orbits of Gx of the length 7
and 21. Consider the orbit of length 7 and remove x from each 4-subset. Get a
copy of the Fano plane with the point set X \ {x}. In such a fashion we obtain
eight copies of the Fano plane (with all possible isolated points) which form a
copy of ON (7, 3).

For the reader’s convenience in Supplement C we provide a list of all 8 Fano
planes in the resulted copy of O = ON (7, 3), when in the role of G our group,
as concretely defined in Section 6 is used.

11 Embeddings of L into N revisited

Here we are interested in investigating once more all embeddings of L into a
prescribed copy of N , provided certain natural requirements are satisfied. These
requirements will be formulated in group theoretical terms.

First, we start from the action of the group S8 on the set V as it appears
in Section 5. It is easy to understand that there are two copies of the graph
N which are invariant with respect to (S8, V ): the one with the edge set E
(as in Section 5) and the one with the edge set E′ = {{(x, a), {a, b, c}}|x 6∈
{a, b, c}}. Both copies N and N ′ have the same group Aut(N ) = Aut(N ′) ∼=
S8. Moreover, these two copies are interchanged by the involution τ , which
transposes pairs (a, b) and (b, a) from V1 and fixes each element of V2.

Thus, in principle, one may consider the group S8×S2, acting on the set V ,
and classify all embeddings into either N or N ′. We nevertheless prefer to fix a
concrete master copy of the Nikolaev graph, say N . In this fashion, the group
S8 still remains our “universal” group.

Let us now consider a concrete copy of the group G = AΓL(1, 8) as a sub-
group of S8, and let us investigate all copies of the graph L, which are invariant
with respect to this selected group G and which are spanning subgraphs of the
master graph N .

As we may easily deduce from the analysis of the master association scheme
M, there exist exactly 8 different copies of L which are invariant with respect
to (G,V ). However computer analysis shows that only two of these copies are
spanning subgraphs of the same copy of N . Denoting these copies by L and L′,
we observe that L and L′ belong to different orbits of the group S8 = Aut(N ).
Let us summarize this part of our observations.

Proposition 11.1. 1. For a given copy N of the Nikolaev graph and the
group Aut(N ) = S8 there exist exactly 1920 copies of the graph L, which
are invariant with respect to a suitable subgroup of S8, isomorphic to G.

2. 480 copies of L in addition are spanning subgraphs of the master copy N
and form two orbits with respect to S8.

3. For all these 480 copies, the left (right) part of L goes to the right (left)
part of N respectively.
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4. Each of the above two orbits of embeddings of L into N splits into two
orbits of length 120 with respect to the group (A8, V ).

Now we wish to define a representative L of one of four orbits of A8. For
this purpose first we need to use the alternative construction of ON (7, 3) as it
appears at the end of Section 10.

Let us describe a copy of graph L. It has again vertex set V = V1 ∪ V2,
exactly like the graph N in Section 5. Consider the vertex (a, b) from V1. Find
a copy Fa of the Fano plane in our overlarge set O which does not contain vertex
a. Find in this copy of Fa three lines through the point b. Substitute b by a
in each of the three lines. Find the three neighbours of (a, b) in our copy L.
For example, for the pair (0, 1), according to our procedure, we obtain triples
{0, 2, 6}, {0, 3, 4}, {0, 5, 7}. It is clear that the resulted graph L is indeed a
spanning subgraph of N as it appears in Section 5.

In what follows we will call the above copy of L = (V,E) the canonical
Ljubljana subgraph of the master copy N (with respect to a prescribed copy G
of the group AΓL(1, 8)). The orbit of A8 on the 120 copies of the canonical
copy L should be called the canonical set E of the embeddings of L into the
master copy of N . This canonical set E is, in fact, the subject of our further
investigations.

Remark. Clearly our description of L depends on the selection of a copy
of a group conjugate to G in the congugacy class of A8. There is a natural
bijection between 120 such groups and 120 copies of ON (7, 3), and finally with
120 embeddings of L into N , forming our canonical set E .

We consider the transitive permutation group (A8, E) and investigate it with
the aid of COCO. Let X = (E , 2−orb(A8, E)) be the Schurian association scheme
formed by the 2-orbits of (A8, E).

Proposition 11.2. 1. The group (A8, E) has rank 5; valencies of non-
reflexive 2-orbits Ri, 1 ≤ i ≤ 4, are 42, 14, 56, 7; all the orbits are
symmetric.

2. X has 6 non-trivial mergings X1 = (1, 2), X2 = (1, 3), X3 = (3, 4), X4 =
(1, 2)(3, 4), X5 = (1, 3, 4), X6 = (1, 2, 3) (we use here brief COCO notation
for the mergings).

3. The strongly regular graphs corresponding to the mergings X4, X5, X6,
have parameters (120, 56, 28), (120, 14, 13), (120, 7, 6) respectively.

4. |Aut(X4)| = 1290240 = 25 · 8!.

Additional analysis shows that the strongly regular graph generating the
rank 3 scheme X4 is isomorphic to the graph which was described in [12].

This bestows extra interest to the association scheme X . In addition we
observe that the basic graph Γ3 of valency 56 is the Deza graph (in the sense of
[27], [34]). We again summarize our computer aided discoveries.

Proposition 11.3. A rank 5 Schurian association scheme X is generated by
the Deza graph Γ3.
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The elaboration of a computer free proof of the theorem deserves special
attention, though it is out of the scope of the current paper.

According to the terminology introduced in [65], the scheme X provides an
example of a Schurian Deza family in a Higmanian house. To the best of our
knowledge, this fact is new. Moreover, it seems that after the Schurian example
on 40 points described in [65], the current example on 120 points is the second
non-trivial one which appears in the literature.

12 The Dejter approach to the Ljubljana graph

As was already mentioned, the alternative approach to the Ljubljana graph was
developed by I. Dejter et al in a sequence of papers [24], [26], [11], [22], [25], [5],
[23].

This approach is quite original. It differs very essentially from the other
ways already presented.

In a few words,, the idea of Dejter looks as follows. Consider the 7-
dimensional cube Q7 as alternative “universal structure”. Consider the sub-
graph of Q7 induced by 16 vertices, which correspond to the Hamming code H3

of dimension 4. Consider subgraph D of Q7, which is induced by the vertices of
V (Q7) \H3. Check that D is vertex- and edge-transitive graph of valency 6 on
112 vertices. Split the graph D into two isomorphic copies of the graph L. To
outline this approach more closely, let us first discuss in more detail some extra
necessary classical structures.

The n-dimensional cube Qn has the vertex set V (Qn) which coincides with
the set of binary sequences of length n, aka vector space of dimension n over the
field Z2. It is convenient also to identify V (Qn) with the set of characteristic
vectors of the power set (that is the set of all subsets) of the n-element set
[0, n− 1]. If necessary, it is convenient to abuse notation identifying the subsets
of [0, n − 1] with their characteristic vectors. Two distinct elements A,B of
V (Qn) are adjacent if the corresponding symmetric difference A4B has the
smallest possible cardinality 1, in other words, if the characteristic vectors of A
and B differ in exactly one position.

Denote by En the full automorphism group Aut(Qn) of the n-cube Qn. It is
well-known that |En| = 2n ·n!; the group En (as an abstract group) is isomorphic
to the wreath product of symmetric groups of degree n and 2. The action of
this wreath product on the set V (Qn) is usually called by group theorists the
product action, see e.g. [29]. Another term, exponentiation, is frequently used
in combinatorics (with credits to F. Harary [45]). Following a suggestion by
L. A. Kalužnin, we use the notation En = S2 ↑ Sn, see [59], [67], [37], [58]. Each
element of the group En may be represented in the table format t = (a, b(x))
where a ∈ Sn, b(x) : [0, n− 1] → S2, a function from [0, n− 1] into S2, and for
x = (x0, . . . , xn−1) ∈ V (Qn), the image xt is defined as having coordinate with
number i equal to (xia−1 )b(i). Note that the group En can also be described as
a semidirect product (Z2)n : Sn of the elementary Abelian group of order 2n

with Sn.
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The next classical structure in our consideration is the Hamming code H3

(in dimension 7). We regard it as a vector subspace of V (Q7) of dimension
4. This subset of cardinality 16 of V (Qn) is the linear span of the rows of the
generating matrix

A =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

It can also be defined with the aid of a parity check matrix

B =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 ,

which in turn may be regarded as a generating matrix of the dual code HD
3 . (We

refer to [50] for detailed consideration of these structures and their symmetry
properties.)

The 16 vectors from the code H3 correspond to seven 3-element subsets of
[1, 7], their seven complements, the empty subset and the entire set [1, 7]. It is
easy to check that the seven 3-subsets form the set of lines of a copy FH of the
same Fano plane. (Note however that, due to the use of the canonical form for
the generating matrix A, the copy FH does not coincide with any of the copies of
F , considered in Section 10.) This easily implies that the automorphism group
of H3 (as it is defined in [50]) coincides with Aut(FH) ∼= PSL(3, 2) and has
order 168. It is also significant to notice that the dual code HD

3 is a subcode of
H3, it corresponds to the line set of FH together with the empty subset. Clearly
Aut(HD

3 ) = Aut(H3).
Let us now consider H3 as the induced subgraph of Q7. It is easy to check

that it forms a coclique of Q7 and thus each vertex from H3 has all 7 neighbors in
the set V (Q7)\H3, which in this section will be denoted by Ω. The proposition
below describes all the information that is required at this stage about the
stabilizer F of H3 in Aut(Q7). Though this proposition was also obtained with
the aid of a computer, it may be justified using computer free arguments (see
discussion below).

Proposition 12.1. (i) F ∼= AGL(3, 2)× S2, has order 2688 and acts transi-
tively and faithfully on the subset H3 of the set V (Q7).

(ii) The group F acts transitively and faithfully on the Ω.

(iii) An equitable partition of Q7 formed by the two orbits of size 16 and 112

of the group F has matrix
(

0 7
1 6

)
.

(iv) The subgraph D of Q7, induced by the vertex subset Ω, has valency 6 and
is vertex- and edge-transitive.

(v) Aut(D) ∼= F = AGL(3, 2)× S2.
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In what follows we will call the graph D the Dejter graph.
We wish to provide for the graph D a self contained computer free descrip-

tion, which allows us also to figure out easily its full automorphism group.
For this purpose we consider ordered flags of the structure A(3, 2) (See Sec-

tion 10), that is pairs consisting of one of the 8 points and one block incident to
it. We consider two kinds of such ordered flags that is (point, block) and (block,
point). Clearly there are 8 · 7 = 14 · 4 = 56 ordered flags of the first kind and
the same number of the second kind. We consider the group F acting on the set
of 112 flags; here elements of AGL(3, 2) act transitively on both sets of ordered
flags of the first and second kind respectively, while the group S2 interchanges
simultaneously each flag (x,B) with its counterpart (B, x). Finally we have
a transitive action of F on the entire set Ω̃ of 112 ordered flags of two kinds.
Note also that if the list of 14 vertices of A(3, 2) is known then each ordered
flag may be identified with a 3-subset of points (we have in addition to carry
information about the kind of flag). Thus, for example the flag (0, {0, 1, 2, 4})
gets the label ({1, 2, 4}, 1), while the opposite flag ({0, 1, 2, 4}, 0) is labeled as
({1, 2, 4}, 2). Both ways of coding flags may be useful.

Let us now define adjacency on ordered flags (here distinct letters designate
distinct points of the selected copy of A(3, 2)): flag ({a, b, c, d}, d) is adjacent to
flag (a, {a, d, e, f}). It is easy to check that the valency of the resulted graph D̃
with the vertex set Ω̃ is equal to 6: For a given flag ({a, b, c, d}, d) we put on
the first position in adjacent flag any of the letters a, b, c; after that there are
exactly two blocks, different from {a, b, c, d} which contain {a, d}. The defined
relation is symmetric.

Proposition 12.2. (i) Aut(D̃) = F ;

(ii) the graphs D and D̃ are isomorphic.

Proof. As usual, both parts of the proposition were confirmed with the aid of
a computer. Clearly Aut(D̃) contains the group F . Suitable ad hoc arguments
allow us to prove that |Aut(D̃)| = |F |, this implies (i).

To prove (ii) we have to reconstruct the structure of Q7 from the graph D.
Let us select from the point set of A(3, 2) a distinguished point, say 0. We add
to the vertex set of D 14 blocks of A(3, 2) and two special symbols, ∅ and U .

Let us consider the sets V1, V2 as follows:
V1 = {U, {1, 2, 4}, {1, 3, 7}, {1, 5, 6}, {2, 3, 5}, {2, 6, 7}, {3, 4, 6}, {4, 5, 7}},
V2 = {∅, {1, 2, 3, 6}, {1, 2, 5, 7}, {1, 3, 4, 5}, {1, 4, 6, 7}, {2, 3, 4, 7}, {2, 4, 5, 6},

{3, 5, 6, 7}}.
First, we naturally identify these 16 elements of V1∪V2 with the 16 elements

of Hamming code H(7, 4).
We can identify elements of Q7 (seen as subsets of [1, 7]) with subsets of size

3 of V1 and of V2, together with the elements of V1 and V2. Each subset of [1, 7]
which is not in V1 ∪V2 is identified with the elements of V1 (or V2) which are of
Hamming distance 2 from it. There are always three such elements.

A subset of size 1, {a} is identified with three sets from V1 which include a.
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A subset of size 2, is identified with ∅ and two sets including it in V2.
A subset of size 3 which is not in V1 has exactly three sets from V1 with

intersection of size 2.
A subset of size 4 which is not in V2 has exactly three sets from V2 with

intersection of size 3.
A subset of size 5 is identified with U and two sets from V1 that it contains.
A subset of size 6 is identified with three sets from V2 not including its

missing element.
This shows us that we can reconstruct Q7 from H(7, 4).
Now we identify the 112 directed flags with subsets of [1, 7] which are not in

V1 ∪ V2.
We start by identifying arbitrarily each of the seven left flags denoted by the

seven 3-subsets that belong to V1 with one of the singleton subsets of [1, 7].
Each two flags from V1 have a single right flag (from V2) as common neighbor,

since they intersect in one element. This right flag is identified with the union
of two singletons. Each of these flags has 0 in the block, but not as the selected
element.

Three right flags representing {a, b}, {a, c}, {b, c}, have a single common left
flag neighbor (element is 0 and block is 0 and three elements of the right flags).
This is identified with {a, b, c}.

The automorphism of Q7 defined by completion corresponds to exchanging
the kinds automorphism, so identification with subsets of sizes 4,5,6 is defined.
All that is left to check is that adjacency of sets of sizes 3 and 4 is the same as
directed flags adjacency, which is immediate.

The main reason for our interest in the Dejter graph in the context of this
paper was the fact, originally observed by Dejter et al, that D splits into two
copies of the graph L. The proof of the existence of such a split depends on the
selected model of the Dejter graph. An outline of such a proof for the model D,
that is an induced subgraph of Q7, was provided in [11].

We start with a given vertex, (0, {0, 1, 2, 4}). Its 6 neighbours are
({0, 1, 3, 7}, 1), ({0, 1, 5, 6}, 1), ({0, 2, 3, 5}, 2), ({0, 2, 6, 7}, 2), ({0, 3, 4, 6}, 4),
({0, 4, 5, 7}, 4).

There are eight ways to select 3 out of its 6 neighbours in a way that is
in a sense compatible with Aut(D̃): Four by selecting an element x not in
{0, 1, 2, 4} and taking the three neighbours with set containing x, and the other
four by taking the neighbours with sets not containing x. Each of those sets
of 3 neighbours extends in one of two ways to a graph isomorphic to L which
is compatible with a subgroup AGL(3, 2) of Aut(D̃). For each such subgraph,
its complement graph in D̃ is also isomorphic to L, so we get a partition of the
edge set of D̃ into two sets of edges of a subgraph isomorphic to L.

Proposition 12.3. Let D̃ be a Dejter graph with the automorphism group
AGL(3, 2). There exists exactly 8 splits of the edge set of D̃ into two com-
plementary sets of edges of L̃ such that the group Aut(L̃) appears as a subgroup
of index 8 in AGL(3, 2). Each such subgroup provides exactly one split.
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Remark. The presented model D̃ of the Dejter graph and description of
its split into two copies of L̃ strongly relies on the presented construction of
ON (7, 3), which (in a sense) is an alternative to the one in [69]. In a wider
context such kind of dependence is discussed in Section 15.

Finally we mention a few new interesting non-Schurian association schemes
which were discovered in the course of the investigation of the centralizer algebra
of the group F = Aut(D).

The centralizer algebra W of the group F has rank 16. In fact, it is a
direct product of two centralizer algebras of orders 56 and 2 and ranks 8 and
2 respectively. With the aid of COCO we investigated all coherent subalgebras
of W . There are 81 such (non-trivial) subalgebras, the ranks of which vary
between 11 and 3. It turns out that a few of those algebras are non-Schurian: a
quite rare occurrence for the direct product of two Schurian algebras, provided
that each of them contains only Schurian subalgebras. Of a special interest
is a commutative subalgebra of rank 7 and valencies 1, 6, 7, 7, 21, 28, 42, having
the same group F of order 2688. There is also a pair of isomorphic rank 5 non-
Schurian algebras with valencies 1, 7, 28, 28, 48, which belongs to the intersection
of classes I and II in the sense of [49]. (We refer to the paper [65] where the
problem of investigation of association schemes of rank 5, as it was formulated
in [49] is considered in the flavor of computer algebra experimentation.) The
automorphism group in this case is isomorphic to S2 × (E64 : PSL(3, 2)), has
order 21504 and rank 10. In our eyes, these non-Schurian coherent algebras
deserve a special attention in the future.

13 Some association schemes on 56 points

We now come back to the consideration of all merging schemes of our master
association scheme M on 56 points as it was presented in Section 7. At this
stage our interest does not stem exclusively from the consideration of the graphs
L, NL and N .

Recall that there are altogether exactly 50 merging schemes, which split
into 43 isomorphism classes under the action of the group CAut(M). The
isomorphism classes are as follows (only those consisting of two schemes are
listed; the remaining ones form classes consisting of a single scheme): {2, 3},
{18, 19}, {22, 33}, {35, 39}, {37, 41}, {38, 40}, {46, 47} (we refer here to the
mergings in Supplement A).

Among the 50 merging schemes not all are of an equal interest. Here we pay
most attention to non-Schurian schemes. Altogether there are 8 such schemes,
two of rank 6 and six of rank 5.

Both mentioned schemes of rank 6 (#12 and #15) have the same au-
tomorphism group CAut(M) of order 336 and the same set of valencies
1, 1, 6, 12, 12, 24, are non-symmetric, though commutative. They are not al-
gebraically isomorphic. The symmetrization of a non-symmetric commutative
scheme forms also an association scheme (see e.g. [2]); for both schemes #12
and #15 this is the same scheme #27. The latter scheme is nothing else but
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the centralizer algebra of the wreath product ˜AGL(3, 2) o S2 of order 228 · 1344.

Here the group ˜AGL(3, 2) denotes the induced action of the group AGL(3, 2)
(considered in its natural action of degree 8) on the set

{
[0,7]

2

}
of all 2-subsets

of the 8-element set [0, 7].

The centralizer algebra n = V ( ˜AGL(3, 2),
{

[0,7]
2

}
) of order 28 has rank 4 and

valencies of basic graphs are 1, 3, 12, 12. To explain it, consider the triangular
graph T (8), its complement T (8) and define two elements from

{
[0,7]

2

}
to be

adjacent in R if their union is a block of S(2, 3, 8). Then the relations T (8),
T (8) \R, R are all 2-orbits of the group AGL(3, 2) acting on the set

{
[0,7]

2

}
. It

is easy to check that this group is 2-closed.
The relations of the merging Schurian scheme #27 may be defined combi-

natorially as “blowup” of the relations of n. Thus we get rank 5 scheme with
the valencies of basic graphs 1, 1, 6, 24, 24.

As was mentioned, the two non-Schurian schemes #12 and #15 may be
explained in a unified manner as non-symmetric fissions of the Schurian scheme
#27. For this purpose we have to consider a concrete copy of overlarge set
ON (7, 3). Its selection depends on the selection of a concrete copy of G as
a subgroup of the group AGL(3, 2) (cf. Section 10). Provided that a concrete
copy of ON (7, 3) is considered, we define “orientation” of one of the two relations
T (8) or T (8) \R. Any of two such orientations define a pair of directed graphs
of valency 12 on the set V1.

Such a definition may be provided in a routine manner, depending on selected
copy of ON (7, 3).

In each of these two cases, the fact that the resulted color graph of rank 6
defines an association scheme follows from computer inspection. A computer
free proof may be provided with the aid of ad hoc counting arguments.

Remark. In both cases it follows from the description that if the pair
((a, b), (a, c)) (((a, b), (c, d))) belongs to a defined directed graph, then the pair
((b, a), (c, a)) (respectively ((b, a), (d, c))) belongs to the same directed graph.
This implies immediately that the automorphism group of the defined relation
is invariant with respect to the group Z2 which reverses all pairs of the form
{(x, y), (y, x)}. In other words, both association schemes have automorphism
group of order 336. In fact, this is the order of the entire automorphism group.

Let us now consider the six non-Schurian association schemes of rank 5.
Just one of them, namely #29 is symmetric. It has valencies 1, 3, 4, 24, 24. Its
automorphism group has order 672 and is twice larger than CAut(M). The
Schurian association scheme #5 defined by the same group of order 672 has
rank 8 and is non-symmetric and non-commutative. The scheme #29 appears
as its symmetrization. This is a rather unusual situation which requires special
attention (cf. end of Section 15), which is, however, out of the scope of the
presentation in the framework of this paper.

Now we pay attention to the remaining five association schemes of rank 5,
which are not symmetric.

One of these schemes, namely #25 with valencies 1, 1, 12, 12, 30 stands alone.
Its automorphism group coincides with CAut(M). In a sense, it is a by-product
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of the scheme #15. Indeed, the symmetric relation of valency 30 is the union
of relations of valency 6 and 24 and is the 2-fold blow-up of the graph T (8).

The non-Schurian schemes #21, 22, 33, 34 together with the Schurian scheme
#23 form a family of five algebraically isomorphic schemes with the valencies
1, 3, 24, 24, 4. The schemes #22, 33 are combinatorially isomorphic (with the aid
of any permutation from CAut(M)\Aut(M)) and both have the automorphism
group coinciding with G. The symmetrization of all these schemes is scheme
#44, which corresponds to the 2-orbits of the iterated wreath product S7 oS2 oS4.
The scheme #21 has group of order 1344 and rank 8 (corresponding to the
scheme #6). The scheme #34 has group of order 672 and rank 8 (scheme #5
respectively). The Schurian scheme #23 has group of order 10752 which is
isomorphic to E8 ×AGL(3, 2).

We believe that this family of algebraically isomorphic association schemes
is new and deserves special attention. The results of the investigation are in
progress and will be published elsewhere together with a more wide panorama
of the entire collection of all mergings of M, both Schurian and non-Schurian.

For the reader’s convenience in Supplement B we provide the Hasse diagram
for all (up to isomorphism) 43 merging association schemes of the scheme M.
The labeling coincides with the one in Supplement A. Note that each double
circle in the diagram substitutes a pair of isomorphic schemes by one of its
representatives.

14 Two-fold isomorphisms and related concepts

Let (G,Ω) be a transitive permutation group, R its antisymmetric 2-orbit, ∆ =
(Ω, R), such that Aut(∆) = G. Let us consider the graph Γ = IDC(∆). Assume
that Γ is a semisymmetric graph and Aut(Γ) = G.

Then there is a definite sense to call the graph ∆ a stable directed arc-
transitive and vertex-transitive graph.

The Iofinova-Ivanov criterion, presented in Section 4, presents a necessary
condition for ∆ to be a stable graph. We know that if, in addition, the per-
mutation group (G,Ω) is primitive, then this necessary condition also becomes
sufficient.

As soon as (G,Ω) is imprimitive this condition is not sufficient. Indeed,
relations 3, 4, 8, 12 of the master association scheme (see Table 7.1) provide
counterexamples: all properties in the criterion are satisfied, however, the cor-
responding directed graphs are not stable.

In our eyes, the observed phenomenon is one of the most significant by-
product results in this paper. Further clarification of this phenomenon is nec-
essary. One of the helpful concepts to be considered for such purpose is two-
fold automorphisms and two-fold 2-orbits, as they were recently introduced by
Scapellato, JL et al, see [70], [72].

Let Γ be an arbitrary directed graph (loops and mixed directed and undi-
rected edges are allowed, though the case of purely directed graphs, that is those
defined by antisymmetric relations will be mostly significant in this section). In
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other words, the adjacency matrix A(Γ) is an arbitrary square (0, 1)-matrix.
Motivated by a possibility to consider simultaneously the same matrix A(Γ) as
the incidence matrix I(S) of an incidence structure S, we wish to go further and
introduce a suitable language for the systematic consideration of the symmetries
of matrices in such a way that some impact between combinatorial and formal
algebraic understanding of the symmetries will be achieved.

For this purpose let us consider two copies of the vertex set V of graphs in
the consideration, say V1 = V × {1} and V2 = V × {2} and let Ṽ 2 := V1 × V2.
Clearly there is a natural bijection between the elements of V 2 and Ṽ 2, when
the image of (x, y) ∈ V 2 is ((x, 1), (y, 2)) ∈ Ṽ 2, or briefly (x1, y2) ∈ Ṽ 2. Here
elements of V1 may be called origins, while elements of V2 ends of the arcs from
Ṽ 2.

Let ˜Sym(V )
2

:= Sym(V1) × Sym(V2). An arbitrary element (g1, g2) ∈
˜Sym(V )

2

will be called a two-fold permutation of elements from V (which by

definition acts on Ṽ 2), or briefly TF permutation. Any subgroup G̃ of ˜Sym(V )
2

will be called a TF permutation group of the set V (again, by definition it acts
on the set Ṽ 2).

Of course, we will consider orbits of the action of (G̃, Ṽ 2), which will be
called TF orbits. Here, by definition, for x1 ∈ V1, y2 ∈ V2, we denote

Orb eG((x1, y2)) := {(xg11 , y
g2
2 )|(g1, g2) ∈ G̃}.

Typically, the sign G̃ may be omitted if it is clear from the context. We may
also consider some stabilizers in a given group G̃. For us a few kinds of stabilizer
will play a significant role, namely for x1 ∈ V1, y1 ∈ V1, y2 ∈ V2:

G̃x1 = {(g1, g2) ∈ G̃|xg11 = x1},
G̃x1,y1 = {(g1, g2) ∈ G̃|xg11 = x1 ∧ yg11 = y1},
G̃x1,y2 = {(g1, g2) ∈ G̃|xg11 = x1 ∧ yg22 = y2}.

In principle, an arbitrary subgroup of ˜Sym(V )
2

may become a subject of
consideration. Nevertheless, for the purposes of the current paper we will be
mainly interested in a few kinds of TF groups, which may be attributed in terms
of symmetries of graphs.

To an arbitrary graph Γ = (V,R), R ⊆ V 2, we attribute its TF copy Γ̃ =
(V1 ∪ V2, R̃), where R̃ = {(x1, y2) ∈ Ṽ 2|(x, y) ∈ R}.

Two graphs Γ1 = (V,R1) and Γ2 = (V,R2) are called TF isomorphic if there

exists a TF isomorphism (g1, g2) ∈ ˜Sym(V )
2

between the TF copies Γ̃1 and Γ̃2.
In other words, Γ1 and Γ2 are TF isomorphic if

Γ̃(g1,g2)
1 = Γ̃2 for a suitable (g1, g2), where Γ̃(g1,g2)

1 := {(xg11 , y
g2
2 )|(x, y) ∈ Γ1}.

Of course, we can also consider TF automorphisms of a given graph Γ and the
concept of the TF automorphism group of the given graph Γ turns out to be
correctly defined for a graph Γ = (V,R):

TFAut(Γ) := {(g1, g2) ∈ ˜Sym(V )
2

|(xg11 , y
g2
2 ) ∈ R̃ for all (x1, y1) ∈ R̃}.
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Following [71], we distinguish a few significant subgroups of the group
TFAut(Γ), namely:

usual automorphism group Ãut(Γ) := {(g, g)|g ∈ Aut(Γ)};
symmetric part of the TF group, namely ΣTFAut(Γ) := TFAut(Γ) ∩

DTFAut(Γ), where the dual TF group DTFAut(Γ) of Γ is the automorphism
group of the dual TF copy DΓ̃ of Γ, that is of DΓ̃ = {(x1, y2)|(y1, x2) ∈ Γ̃}.

Clearly, the dual TF copy of Γ is the TF copy of the transposed graph
ΓT = (V,RT ), where RT := {(y, x)|(x, y) ∈ R}. The word dual stems from the
fact that the dual copy DΓ̃ corresponds to the dual incidence structure with
respect to the incidence structure S with I(S) = A(Γ).

We also consider other subgroups of TFAut(Γ):
LTFAut(Γ) := {(g, e)|(g, e) ∈ TFAut(Γ)};
RTFAut(Γ) := {(e, g)|(e, g) ∈ TFAut(Γ)};
NTFAut(Γ) := {(g1, g2)|(g1, g2) ∈ TFAut(Γ) ∧ g1, g2 ∈ Aut(Γ)},

each ingredient of TF automorphism from NTFAut(Γ) naturally restricts to an
automorphism of Γ. Here e is the identity permutation. Clearly, the left and
right groups LTFAut(Γ) and RTFAut(Γ) are normal subgroups of TFAut(Γ).

Proposition 14.1. Any TF orbit of the group TFAut(Γ) is a union of TF
copies of usual 2-orbits of the group Aut(Γ).

Proof. The proof is evident because the isomorphic image Ãut(Γ) of the group
Aut(Γ) is a subgroup of TFAut(Γ).

Let us call an arc-transitive (directed) graph Γ = (V,R) a TF stable graph if
R̃ is still the TF orbit of the group TFAut(Γ). We hope that the concept of TF
stable graph may play a significant role in the investigation of diverse kinds of
the stability, which were formulated with the aid of the double covers of graphs.

We conclude with a couple of reasonably friendly examples with the aim of
creating for the reader a helpful context in the newly defined TF world.

First, let us stress that, up to notation, for an arbitrary graph Γ with adja-
cency matrix A(Γ) and corresponding incidence structure S with the incidence
matrix I(S) = A(Γ), the groups TFAut(Γ) and Aut(S) are clearly isomorphic.
This helps to manipulate successfully with these groups, switching back and
forth between the two natural interpretations of the same square (0, 1)-matrix
A.

Example 14.1 (A circulant graph on 6 vertices.). Let us consider the circulant
graph Γ = Cay(Z6, {1, 4}) (we refer to [92] for more information about circulant
graphs, their automorphism groups, and corresponding Schur rings, a particular
case of association schemes). It is more convenient for the current purposes to
label the vertices of Γ by elements from [1, 6] as in Figure 6(a) instead of those
in Z6 = {0, 1, 2, 3, 4, 5}. We can easily depict the same graph in a different way,
presented in Figure 6(b).

Here a double arrow from “metavertex” {x, y} to the “metavertex” {u, v}
substitutes 4 arrows (x, u), (x, v), (y, u), (y, v). In other words, our graph Γ is a
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Figure 6: Circulant graph Γ and related graphs

“blow-up” of a directed triangle, where each vertex of the triangle is substituted
by a coclique of size 2.

This new interpretation of the graph Γ immediately implies that H =
Aut(Γ) = Z3 o Z2 is the wreath product of cyclic groups Z3 and Z2, and thus
|Aut(Γ)| = 3 · 23 = 24.

The 2-orbits of the group H are arc sets of the Cayley graphs Cay(Z6, {0}),
Cay(Z6, {1, 4}), Cay(Z6, {2, 5}) and Cay(Z6, {3}), denoted by R0, R1, R2, R3.
Here R0 consists of loops, R2 = RT1 , while the graph Γ3 = (Z6, R3) appears in
Figure 6(c).

Clearly, the adjacency matrix A(Γ) looks as follows:

A = A(Γ) =


0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0

 .

Considering the corresponding incidence structure S = (P,B) with the point set
P = [1, 6], we can easily detect that the set B of blocks consists of six elements,
namely, each of the subsets {1, 4}, {2, 5}, {3, 6} appears as a multiple block with
multiplicity 2. The automorphism group Aut(S) has therefore structure S3 o E4

of the wreath product of S3 with E4. Here E4, the elementary Abelian group of
order 4, is generated by permutations switching the end of an edge and two copies
of the edge with the same ends, while S3 is responsible for the permutation of
the three edges. The order of the group Aut(S) is 3! ·43 = 27 ·3 = 384. Note that
the provided combinatorial vision of the group Aut(S) is indeed quite evident.

Let us now switch back to the strict consideration of the matrix A and its TF
symmetries. To simplify notation, the elements of V1, that is rows of A, were
denoted by their numbers, while the elements of V2, that is columns of A, by the
symbols ĩ. Let us list a few permutations of G̃ = TFAut(Γ), which can be clearly
seen from the picture. In some of these ordered pairs of permutations, one of the
components is the identity permutation which is suppressed for ease of notation.
It is clear whether the shown permutation is the first or the secend entry in the
pair because the second entry is the one acting on columns which are denoted
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Figure 7: Oriented graph P (9) and auxiliary graph ∆

by the ˜ sign. Here a1 = (1, 4), b1 = (2, 5), c1 = (3, 6), a2 = (1̃, 4̃), b2 = (2̃, 5̃),
c2 = (3̃, 6̃), h = (1, 2, 3)(1̃, 2̃, 3̃)(4, 5, 6)(4̃, 5̃, 6̃), i = (1, 2)(4, 5)(2̃, 3̃)(5̃, 6̃).

The group 〈a1, b1, c1, a2, b2, c2, h, i〉 generated by the above 8 permutations,
clearly has structure E64 : S3 and thus is of order 384. It is a subgroup of
TFAut(Γ). At this stage we claim that this is the entire group G̃ = TFAut(Γ),
just comparing its order with the order of the isomorphic group Aut(S).

The reader is now welcome to check that
G̃1 = 〈b1, c1, a2, b2, c2, hi〉 has order 64,
G̃1,2̃ = 〈b1, c1, a2, b2, hi〉 has order 32,
G̃1,1̃ = 〈b1, c1, b2, c2〉 has order 16.
Therefore, using the Lagrange theorem for permutation groups, we obtain

that |TF ((1, 2̃))| = [G̃ : G̃1,2̃] = 12, |TF ((1, 1̃))| = [G̃ : G̃1,1̃] = 24. (Here,
TF ((a, b̃)) represents the orbit of the pair, consisting of row a and column b̃.)
Because 12 + 24 = 36 = 62, we already are getting the full list of the TF orbits
of the group G̃. Clearly this list consists of R1 and R0 ∪R2 ∪R3. In particular,
we obtain that the graph Γ is TF stable.

As an extra simple exercise, we list below a few other subgroups of G̃, using
the notation introduced above. Here

Ãut(Γ) = 〈a1a2, b1b2, c1c2, h〉 ∼= Aut(Γ)
ΣTFAut(Γ) = TFAut(Γ),
LTFAut(Γ) = 〈a1, b1, c1〉 ∼= E8,
RTFAut(Γ) = 〈a2, b2, c2〉 ∼= E8,
NTFAut(Γ) = 〈a1, b1, c1, a2, b2, c2, h〉 ∼= Z3 o E4.

Example 14.2. The diagram of graph Γ, depicted in Figure 7, is borrowed from
[39], where it was used for the discovery of two new strongly regular graphs on
512 vertices. This graph is an “orientation” of the graph L2(3); note that L2(3)
is isomorphic to the Paley graph P (9).

It is easy to understand that the automorphism group G = Aut(Γ) this time
is isomorphic to the wreath product Z2 o Z3 and has order 2 · 32 = 18. Let
V = [1, 9] be the vertex set of Γ. The set 2− orb(G,V ) consists of five relations
R0, R1, R2, R3, R4, where R1 is the arc set of Γ, R2 = RT1 , while R3 and R4

are two orientations of the complement of L2(3); the complement is isomorphic
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to the underlying graph of Γ. It is important to mention that the four graphs
Γ = Γ1, Γ2, Γ3, Γ4 are all isomorphic.

First, we again consider the incidence structure S such that I(S) = A(Γ).
In this case each block of S is an edge of the auxiliary graph ∆, depicted in
Figure 7(b).

This graph ∆ is 3◦K3, that is a disjoint union of three copies of K3. Thus the
group G̃ = Aut(S) is again easily understood with the aid of purely combinatorial
arguments: G̃ = S3 o S3 has order 3!(3!)3 = 1296.

The reader is invited to check that this time G̃1,2̃
∼= S3 × S2 × S2 and has

order 24; G̃1,1̃
∼= (S2 o S3)× S2 and has order 144; G̃1,3̃

∼= S2 o S3 and has order
72. Therefore the TF orbits of the pairs (1, 2̃), (1, 1̃) and (1, 3̃) have the lengths
54, 9, 18 respectively. Thus, because 54 + 9 + 18 = 92, we get a complete list of
the TF orbits as follows: R0, R1 ∪ R2 ∪ R4, R3. Note that this time the graph
Γ is not TF stable, because its arc set merges with two other 2-orbits into a TF
orbit of the group G̃.

Comparing the two examples, one can say that while all TF automorphisms
of the graph Γ in Example 14.1 are, in a sense, predictable, in Example 14.2
we get extra surprises, due to the fact that the underlying graph of Γ and its
complement are isomorphic.

We conclude this section with an extra notice. The new concept of a stable
graph, suggested here, expresses its flexibility. On one hand, a TF stable graph
does not have to be a stable directed graph. On the other hand, the fact
that graph Γ is not TF stable reflects some extra features of the symmetry of
the initial graph Γ, which may remain hidden from the observer on first sight.
This confirms the hopeful efficiency of TF stability for further more systematic
investigations.

15 A wider scope

Computer algebra experimentation in AGT is the main subject of this paper.
Our goals were to demonstrate to the reader:

• which kinds of computations appear in this area;

• which computer packages may be helpful and how they can be used;

• how routine data, produced with the aid of a computer, should be pre-
sented and analyzed;

• why is it that in many cases the computer should be considered as the
most reliable tool for producing proofs of claims about diverse properties
of the structures being investigated;

• what is a successful computer free interpretation of the results of compu-
tations;
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• how the impact of ideas and techniques, mobilized from diverse areas of
algebra and combinatorics may help to reach a theoretical generalization
of the computer results achieved.

To approach these goals, we started from the consideration of the two concrete
graphs L and N on 112 vertices and were simply following all the ongoing logics
of a computer aided investigation of association schemes and diverse structures
which were naturally linked to the starting graphs. Discovery of a number
of new, quite interesting, association schemes on 56,112 and 120 points serves
as additional reward and confirms that our methodology is natural: it allows
us to detect deep links of the investigated graphs with many other structures
considered in AGT, which were hidden at first sight.

The computer packages used are the subject of ongoing extension, improve-
ment and advancement: for example, new releases of GAP are announced, on
average, once every two years. Similarly, during recent years, certain efforts were
made in order to start a transformation of COCO into a new package COCO-II
for GAP cf. [66].

While from the side of computer algebra AGT appears just like one of many
possible subject areas, for the authors this is the central stage of our research
interests. This is why in the current section we take liberty to discuss in more
detail a number of topics, related to the structures, axiomatical systems and
lines of investigation that were considered in this paper.

The paper [101] was very influential, promoting further research of semisym-
metric graphs: Besides [62], [52] and [55] we wish also to mention a contribution
of A. V. Ivanov, see [56], [57], who classified with the aid of a computer all
semisymmetric graphs with at most 30 vertices. Up to isomorphism there are
just 5 such graphs on 20, 24 and 28 vertices, those which were already described
in [40], [8] and [101]. A significant corollary of the attained result is the negative
answer to question 4.2 from [40] about the existence of a semisymmetric graph
with 30 vertices. In fact, the techniques of constructive enumeration of the inci-
dence structures, developed by Andrei Ivanov, still have potential to be used for
advanced enumeration and deeper investigation of semisymmetric graphs with
a relatively small number of vertices, cf. [106].

During the last decade a new wave of interest in semisymmetric graphs was
initiated, in particular due to the efforts of D. Marušič and his colleagues, see
[31], [82], [85].

Cubic semisymmetric graphs are considered on both theoretical and com-
puter aided approaches [80], [81], [103], [20].

There is a number of interesting lines of investigation of semisymmetric
graphs. Below we briefly discuss a few of these lines.

Recall that a semisymmetric graph Γ is called biprimitive ([55]) if Aut(Γ)
acts primitively on both parts of the bipartite vertex partition of Γ. Biprimitive
(semisymmetric) graphs of a small order are, of course, of a definite interest;
typically they are considered up to a bipartite complement. The examples on
80, 126 and 990 vertices were already mentioned in [54]. In fact the first two are
the first members of two infinite series, see also [63]. It was proved in [31] that
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the two examples on 80 vertices of valency 4 and 36 are the smallest biprimitive
ones.

It is well-known from the time of Folkman [40] that a regular edge-transitive
graph of order 2p or 2p2 (p a prime) is necessarily vertex-transitive. In this
context, among many papers related to the Gray graph (see e.g. references in
[66]) the one of the central interest is [81], where the Gray graph is characterized
as the unique cubic semisymmetric graph of order 2p3, p a prime.

Serious tools from group theory are mobilized in many investigations of the
semisymmetric graphs, see e.g. [33], [93].

A geometric approach in conjunction with the use of diverse algebraic tech-
niques was successfully used, see e.g. [74], [75], [32], [91].

It is significant to mention that, using covering techniques, see e.g. [4], [55],
one may get from one semisymmetric graph Γ an infinite series of such graphs
of the same valency; thus in general, the problem of the classification of all
semisymmetric graphs is in a sense intractable. This is why special attention
should be paid to irreducible examples (with respect to covering). In particular,
such examples of a non-parabolic type should be investigated systematically.

Though below we are coming back to a review of semisymmetric graphs (in
conjunction with a few other topics), unfortunately, a complete and comprehen-
sive survey of all facets of this line in AGT goes beyond the scope of the current
paper.

The concept of stability coined in [87] in the case of undirected graphs has
attracted attention of very serious investigations, such as [99], [100], [108].

On the other hand, in a number of papers very skillful diverse techniques are
demonstrated in order to consider links between vertex-transitive antisymmetric
2-orbits and their IDCs, see [86], [106], [107].

We hope that the concept of two-fold orbits, which was outlined in Section
14, will help in future to consolidate diverse efforts of combinatorial, geometric
and algebraic nature in order to consider double covers of both directed and
undirected graphs, basing on a more uniform algebraic background. It is worth
also to mention, that double covers are considered in graph theory in wider
contexts, see e.g. [51], [88].

Methods of graph coverings, as they were discussed, say in [4] at the initial
stage were of a more abstract nature. For example, Biggs admits (at the bottom
of p. 152) that the three first graphs in his infinite series have 234 and about 221

and 2100000 vertices respectively. It took a while in order to develop systematic
methods of topological graph theory (in a sense of [44]). Nowadays voltage as-
signments appear as an efficient tool to construct and investigate semisymmetric
graphs, see [80], [78], [103], [38].

A promising potential lies, in our eyes, in the conjunction of the techniques
of topological graph theory and those of coherent configurations, in particular
of half-homogeneous configurations (in the sense of [64]).

A general class of half-homogeneous configurations, namely Wallis-Fon-Der-
Flass (briefly WFDF) configurations was recently introduced and investigated,
see [64], [65]. It is worth mentioning that the WFDF configuration on 28 points
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in [64] which appears via the induced action of the group E8 on the set
{

[0,7]
2

}
,

has a natural covering by the WFDF configuration on the set Ω of cardinality
56, as it appears in Section 7. (Just consider E8 as a subgroup of the group G.)
We are sure that the consideration of the latter may explain, in a more unified
manner, the origin of a number of new association schemes on 56 points which
were introduced in this paper.

The idea of a TF automorphism, TF groups, TF orbits may be traced to a
few mathematicians (already mentioned in Section 14), in particular to Bohdan
Zelinka (1940-2005) whose scientific heritage in AGT still remains underrated.
Some of his papers, such as [110], [112] (as well as [111]) may provide helpful
insights to an interested reader.

During last decade the authors Scapellato, JL and their collaborators (in
particular we wish to mention graduate thesis [90]), made some systematic ef-
forts to exploit these TF concepts for the purposes of traditional graph theory.
Section 14 in the current paper aims to outline possible attractive new applica-
tions of the developing techniques of TF strictly inside of AGT.

As one interesting further example on the way of the use of the TF approach
we recommend the consideration of the Doyle-Holt graph on 27 vertices and its
automorphism group of order 54 (see [104], [66] and references in it). The double
cover of this graph (as well as of a corresponding antisymmetric 2-orbit) may
provide a worthy training ground for better understanding of similarities and
distinctions in the behavior of IDC for directed and undirected graphs.

Another challenge for researchers goes through the consideration of amal-
gams of groups (as they already appear in [55]) and further to the theory of
diagram geometries (see e.g. [94], [53]). A great advantage of this language is
that it provides a natural, adequate, in a sense coordinate free vision of all links
between the considered structures and their symmetries. We have brought to
the attention of the reader a few attempts to create models for the graph L and
to digest the embeddings of L into N . Each way considered by us was reason-
ably simple and provided the reader with immediate access to the investigated
objects. Nevertheless, depending on the selected “universal” group, to which
we were referring (say AGL(1, 8), AGL(3, 2), A8 or S2 ↑ S7) we were forced
each time to start consideration from scratch and to observe already investi-
gated interactions from a new angle. Involvement of suitable group amalgams,
even for the case of the current project, may allow the presentation of all the
links we have studied in a much more standard manner. Of course, the price
for such an advantage would be the substitution of the exploited impact of
computational and combinatorial techniques by much more complicated group-
theoretical technology. Also our favorite non-Schurian association schemes may
remain hidden in the relative shadow under the strong radiation of this kind of
algebraic sunlight.

Finally, it remains to mention an interesting speculation (due to Misha
Muzychuk) about a possible origin of some of our non-Schurian association
schemes. In general, the center of a non-commutative coherent algebra is not
necessarily also a coherent algebra. Nevertheless, this may be true, for exam-
ple, for some non-commutative association schemes (a very simple example is
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provided by the symmetrization of the thin scheme of quaternions on 8 points).
We refer to [15] for the discussion of symmetrization of association schemes in
a close context. In this framework the investigation of the center of the above
mentioned WFDF coherent configuration on 56 points, as well as of its mergings
may be of a definite interest.

16 Concluding comments

We use this opportunity to reveal some details about the history of a note [62].
As was mentioned above, the results were obtained in 1977. Next year the
author MK got an invitation to participate in the conference at Szeged and
tried to get a permission from the authorities to attend this event. At the time
of “iron curtain” such a permission was not given. Fortunately, Laci Babai was
visiting USSR during fall 1978. He kindly picked up the manuscript prepared
by MK, and published its English version, elaborated by LB, in the proceedings
of the Szeged conference. The English wording “semisymmetric”, used in [62]
was suggested by Laci. The entire picture of the circumstances of this travel of
L. Babai is presented in [1].

In fact, during the preparation of the note [62], LB substituted part of
the original group-theoretical reasonings with a more elaborate use of counting
of suitable simple numerical invariants of the vertices in the two parts of the
considered bipartite graph. The original arguments of MK, though also quite
simple, relied on the investigation of the “induced symmetric group” see [60],
[37]. By chance, a self-contained treatment containing the description of the
automorphism group of the Johnson association scheme J(n, 3) was recently
presented in [28].

This project was originated during a short visit of the author MK to Ljubl-
jana in the summer of 2003. MK learned about the Ljubljana graph from Tomo
Pisanski and quickly realized its relevance to the graph N . However, it took a
while to elaborate information about all links between the graphs L and N . The
preliminary version of this paper was presented by MK as an invited lecture at
the mini-conference “Tomo is sixty”, Ljubljana, June 2009. Later on, the two
authors from Beer Sheva learned about the TF approach, elaborated by Scapel-
lato, JL et al, and suggested to JL to merge efforts. The lecture, presented by
MZA at Maribor, emerged from this extended partnership.

It is impossible to overevaluate the significance and relevance of the use of a
computer algebra technology to all the stages of the fulfillment of this project.
This is why we wish to conclude the text with a clear formulation of a few tasks
for further research which are, in our eyes, strictly linked to this area of scientific
computation.

Task 1. To fulfill constructive enumeration of all (up to isomorphism) small
semisymmetric graphs (thus extending the results in [57]), paying a special at-
tention to the graphs of a non-parabolic type. It seems that relying in particular
on currently available GAP catalogs of transitive permutation groups, this task
may be fulfilled at least to n = 86 vertices.
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Task 2. To consider the WFDF configuration on 56 points discussed
above; in particular, to enumerate and to investigate all its merging association
schemes. Special attention should be paid to the resulting algebraic mergings
and algebraic twins in a way similar to the one exploited in [64].

Task 3. To arrange an extensive computer aided experimentation in order
to measure the efficiency of the Iofinova-Ivanov criterion, as it is modified in
Theorem 4.9. The goals are to find new nice examples of the cases where it does
not work, and/or to reach further strengthening of the criterion, relying on the
properties of the revealed examples.
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Supplement A. List of mergings of association
scheme M

No. rank merging unmerged |Aut|
1 12 (1,7)(5,9)(3,4)(12,8)(6,14)(17,15)(10,16)(11,13) 2,18,19 336
2 8 (1,5)(6,17,10,11,13,16,14,15)(7,9)(18,19)(3,8)(12,4) 2 1344
3 8 (2,19)(4,8,6,17)(7,9)(10,11)(1,12,13,15)(5,3,16,14) 1 1344
4 8 (1,3,4,7)(5,12,8,9)(6,11,13,14)(17,10,16,15) 2,18,19 21504
5 8 (1,3,6,11)(5,12,17,10)(4,7,13,14)(8,9,16,15) 2,18,19 672
6 8 (1,3,13,14)(5,12,16,15)(4,6,7,11)(8,17,9,10) 2,18,19 1344
7 8 (1,4,11,14)(5,8,10,15)(3,6,7,13)(12,17,9,16) 2,18,19 1344
8 8 (1,6,7,14)(5,17,9,15)(3,4,11,13)(12,8,10,16) 2,18,19 2688
9 8 (1,5)(2,19)(3,12,14,15)(13,16)(4,6,9,10)(8,17,7,11) 2 1344
10 7 (1,5)(6,17,10,11,13,16,14,15,18,19)(7,9)(3,8)(12,4) 2 40320
11 7 (18,19)(1,3,4,7)(5,12,8,9)(6,11,13,14)(17,10,16,15) 2 228 · 168
12 6 (6,17,10,11,13,16,14,15)(18,19)(1,12,8,7)(5,3,4,9) 2 336
13 6 (1,5,3,12,4,8,7,9)(6,17,14,15)(10,11,13,16)(18,19) 2 2688
14 6 (1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 2,18,19 228 · 38 · 7
15 6 (1,5,3,12,4,8,7,9)(18,19)(6,10,16,14)(17,11,13,15) 2 336
16 6 (1,5,6,17,7,9,14,15)(3,12,4,8,10,11,13,16) 2,18,19 21504
17 6 (1,5,7,9)(3,12,4,8)(6,17,10,11,13,16,14,15)(18,19) 2 2688
18 6 (2,18,19)(1,3,4,6,11,13,14)(5,12,8,17,10,16,15) 7,9 846720
19 6 (2,18,19)(3,4,6,7,11,13,14)(12,8,17,9,10,16,15) 1,5 846720
20 6 (1,5,3,12,4,8,7,9)(6,17,10,11,13,16,14,15) 2,18,19 172032
21 5 (2,19)(1,3,8,17,9,10,13,14)(5,12,4,6,7,11,16,15) 18 1344
22 5 (2,19)(1,12,4,17,7,10,16,14)(5,3,8,6,9,11,13,15) 18 168
23 5 (2,19)(1,12,4,17,9,11,16,14)(5,3,8,6,7,10,13,15) 18 10752
24 5 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15) 2,18,19 232 · 39 · 5 · 7
25 5 (6,17,10,11,13,16,14,15,18,19)(1,12,8,7)(5,3,4,9) 2 336
26 5 (18,19)(1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 2 249 · 38 · 7
27 5 (1,5,3,12,4,8,7,9)(6,17,10,11,13,16,14,15)(18,19) 2 231 · 168
28 5 (1,5,7,9)(3,12,4,8)(6,17,10,11,13,16,14,15,18,19) 2 80640
29 5 (1,5,3,12,6,17,10,11)(2,19)(4,8,7,9,13,16,14,15) 18 672
30 5 (1,5,3,12,13,16,14,15)(2,19)(4,8,6,17,7,9,10,11) 18 10752
31 5 (1,5,4,8,10,11,14,15)(2,19)(3,12,6,17,7,9,13,16) 18 10752
32 5 (2,19)(1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 18 249 · 315 · 7
33 5 (2,19)(1,3,8,6,7,10,16,15)(5,12,4,17,9,11,13,14) 18 168
34 5 (2,19)(1,3,8,6,9,11,16,15)(5,12,4,17,7,10,13,14) 18 672
35 4 (2,3,12,4,8,6,17,7,9,10,11,13,16,14,15,18,19) 1,5 27 · 310 · 5 · 79

36 4 (2,18,19)(1,3,4,6,7,11,13,14)(5,12,8,17,9,10,16,15) 21 · (8!)7

37 4 (1,5,3,12,4,8,6,17,10,11,13,16,14,15)(2,18,19)(7,9) 8 · (7!)2

38 4 (1,5,3,12,7,9,13,16,14,15)(2,10,11,19)(4,8,6,17,18) 40320
39 4 (1,5,2,3,12,4,8,6,17,10,11,13,16,14,15,18,19) 7,9 27 · 310 · 5 · 79

40 4 (1,5,4,8,6,17,7,9,10,11)(2,13,16,19)(3,12,14,15,18) 40320
41 4 (1,5)(2,18,19)(3,12,4,8,6,17,7,9,10,11,13,16,14,15) 8! · (7!)2

42 4 (1,5,3,12,4,8,7,9)(6,17,10,11,13,16,14,15,18,19) 2 228 · 8!
43 4 (1,5,6,17,7,9,14,15,19)(3,12,4,8,10,11,13,16,18) 2 8 · 9!
44 4 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15)(2,19) 18 7! · (2 · 242)7

45 4 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15)(18,19) 2 7! · (24 · 4!)7

46 3 (1,5)(2,3,12,4,8,6,17,7,9,10,11,13,16,14,15,18,19) 8! · (7!)8

47 3 (1,5,2,3,12,4,8,6,17,10,11,13,16,14,15,18,19)(7,9) 8! · (7!)8

48 3 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15,18,19) 2 228 · 28!
49 3 (1,5,2,3,12,4,8,6,17,7,9,10,11,13,16,14,15,19) 18 (4!)14 · 14!
50 3 (1,5,3,12,4,8,6,17,7,9,10,11,13,16,14,15)(2,18,19) 7! · (8!)7
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Supplement B. Hasse diagram of mergings of M

38 47 48 49 50

3637 39 42 4344 45

18 21 22 23 24 25 26 27 28 293031 3234

3 10 11 12 13 14 15 16 17 20

2 45 67 8

1
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Supplement C. List of ON(7, 3)

0 {1, 2, 6}, {3, 5, 6}, {2, 3, 7}, {4, 6, 7}, {1, 3, 4}, {1, 5, 7}, {2, 4, 5}
1 {0, 2, 7}, {0, 3, 6}, {2, 4, 6}, {0, 4, 5}, {5, 6, 7}, {3, 4, 7}, {2, 3, 5}
2 {0, 1, 3}, {0, 4, 7}, {3, 5, 7}, {0, 5, 6}, {1, 6, 7}, {1, 4, 5}, {3, 4, 6}
3 {0, 1, 5}, {1, 4, 6}, {0, 6, 7}, {1, 2, 7}, {2, 5, 6}, {4, 5, 7}, {0, 2, 4}
4 {0, 1, 7}, {1, 2, 3}, {3, 6, 7}, {1, 5, 6}, {0, 3, 5}, {0, 2, 6}, {2, 5, 7}
5 {0, 1, 2}, {2, 3, 4}, {1, 4, 7}, {2, 6, 7}, {0, 4, 6}, {0, 3, 7}, {1, 3, 6}
6 {0, 1, 4}, {2, 4, 7}, {0, 2, 3}, {3, 4, 5}, {1, 2, 5}, {1, 3, 7}, {0, 5, 7}
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