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1 Introduction

Paying our tribute to the mathematical heritage of D. G. Higman we in-
vestigate imprimitive association schemes on 40 points with 4 classes which
belong to proper class II in a sense of [Hig95].

Considering four possible sets of intersection numbers, corresponding to
a parabolic of type 10 ◦ K4, we enumerate all 15 schemes for the first case,
discover schemes covering second and third parameter sets, proving that
second case is unique up to isomorphism, while the fourth parameter set is
easily discarded.

Though most of the obtained results are essentially computer dependent,
finally for many constructed structures a computer free interpretation is
presented.

Section 2 provides a short introduction to the concepts of coherent conig-
uration and association scheme.

Following to a spirit of H. S. M. Coxeter, a number of nice auxiliary
objects (including cages on 40 and 50 vertices) are inspected in Section 3,
enjoying all opportunities provided by the use of modern computer algebra
techniques.

In Section 4 a new concept of a total graph coherent configuration sug-
gested by the authors is investigated. Exceptional mergings which appear
from such configuration on 40 points serve as a motivation for the whole
project. This in particular implies interest to Higman’s classification of
rank 5 imprimitive association schemes which is briefly discussed in Section
5 and to the consideration of the classical Deza graph (a generalization of
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the notion of a strongly regular graph) in Section 6. A suggested new model
for this object and a number of related structures stem from investigation
of suitable permutation actions of group E24 ⋊ S5 of order 1920.

The coherent closure of the classical Deza graph on 40 vertices provides
an attractive example of a Higmanian association scheme m. There are
altogether 15 schemes which are algebraically isomorphic to m: an innovative
computer aided approach to their enumeration is described in Section 7.
Elements of recently developed theory of WFDF coherent configurations
are considered in Sections 8, 9, in particular, the scheme m and two of its
algebraic twins are revealed as merging schemes inside of certain WFDF
configuration.

Section 10 justifies newly discovered properties of an amazing graph on
40 vertices: Anstee-Robertson cage of valency 6 and girth 5 which was also
discovered independently by C. W. Evans. The coherent closure of this graph
is a non-Schurian association scheme of rank 5. This unexpected structure
turns out to be unique up to isomorphism: a nice simple consequence of the
uniqueness of the cage on 40 vertices.

An interesting link of this cage with the unique locally icosahedral graph
on 40 vertices (see [BloBBC85]) is described.

The cage on 40 vertices was originally discovered by Robertson as an
induced subgraph of the Hoffman-Singleton graph, HoSi. A few models of
HoSi are revised in Section 11 in terms of coherent configurations. The
considered structures may be of a certain independent interest in view of
ongoing attempts to find any similarities between HoSi and possible Moore
graph of valency 57. In addition, two more association schemes on 40 vertices
are briefly introduced.

Finally, Section 12 contains discussion of various issues which were post-
poned to the end from the main line of presentation based on amalgamation
of techniques in algebraic combinatorics, group theory and computer alge-
bra.

2 Coherent configurations and association

schemes

In this section we provide brief discussion of most significant notions and
notation in order to make presentation relatively self-contained. A survey
[FarKM94] may serve as a source for more details. We denote dihedral group
of order 2n by Dn. A cyclic group of order n is denoted by Zn in contrast
to Cn which is a regular connected graph of valency 2 with n vertices.
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2.1 Main concepts

We start with a brief review of main concepts referring to [BanI84],
[BroCN89], [FarKM94] for a more detailed presentation.

By a color graph we understand a pair (Ω,R), where Ω is a set of vertices
and R a partition of Ω2 into a set of non-empty disjoint binary relations on
Ω.

According to Higman [Hig70] a coherent configuration is a color graph
m = (Ω,R), R = {Ri|i ∈ I} such that the following conditions are satisfied:

1. The identity relation IdΩ = {(x, x)|x ∈ Ω} is a union of suitable
relations Ri, i ∈ I ′, I ′ ⊆ I.

2. For each i ∈ I there exists i′ ∈ I such that Rt
i = Ri′ , where Rt

i =
{(y, x)|(x, y) ∈ Ri}.

3. For any i, j, k ∈ I the number pk
ij of elements z ∈ Ω such that (x, z) ∈

Ri and (z, y) ∈ Rj is constant provided that (x, y) ∈ Rk.

The numbers pk
ij are called intersection numbers of m. We refer to Ri as

basic relations, graphs Γi = (Ω, Ri) as basic graphs and adjacency matrices
Ai = A(Γi) as basic matrices of m.

We use notions of a fiber of a coherent configuration, and of a type of
it as they appear, e.g. in [Hig75]. The number |I|, equal to the number of
basic relations is called rank of m, the number |Ω| is the order of m.

If (G,Ω) is a permutation group, 2 − orb(G,Ω) denotes the set of all
2-orbits of (G,Ω), that is orbits of the induced action of G on Ω2. It is easy
to see that (Ω, 2 − orb(G,Ω)) is a coherent configuration. Such coherent
configurations will be called Schurian (cf. [FarKM94]).

A particular case of a coherent configuration m for which the identity
relation IdΩ is one of the basic relations of Ω is called a homogeneous coherent
configuration or an association scheme. Typically a basic relation IdΩ is
denoted by R0, all the remaining basic relations are called classes. We
stress that like in [BanI84] in our terminology an association scheme is not
presumed to be symmetric or commutative.

A notion of a distance regular graph and of a corresponding to it metric
(P-polynomial) association scheme is considered in [BanI84], [BroCN89].

Strongly regular graphs are distance regular graphs of diameter 2.

2.2 Coherent closure

A notion of a coherent configuration may be reformulated in terms of ma-
trices. A coherent algebra W is a set of square matrices of order n over
the field C which is a matrix algebra and in addition is closed with respect
to Schur-Hadamard multiplication, transposition and contains the identity
matrix I and the all-one matrix J .
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The set of basic matrices {Ai|i ∈ I} of a coherent configuration m serves
as a standard basis of the corresponding coherent algebra W , in this case we
write W = 〈A0, A1, . . . , Ar−1〉. Conversely, a coherent algebra W has a basis
of (0,1)-matrices, and this basis can be regarded as a set of basic matrices
of a coherent configuration m.

It is easy to check that the intersection of coherent algebras is again a
coherent algebra. This implies existence of the smallest coherent algebra
containing a prescribed set B of matrices of order n. Such algebra is called
coherent closure of B, denoted by 〈〈B〉〉. An efficient polynomial time al-
gorithm for the computation of coherent closure was suggested in [WeiL68],
see also [Wei76]. Usually we call this algorithm WL-stabilization (see e.g.
[KliRRT99]).

A graph Γ = (V,E) will be called by us a coherent graph if E is one
of the the basic relations of the coherent closure 〈〈Γ〉〉. For example, each
distance regular graph is coherent.

2.3 Isomorphisms and automorphisms

An isomorphism of color graphs (Ω,R) and (Ω′,R′) is a bijection φ from
Ω to Ω′ which induces a bijection of colors (relations) in R onto colors in
R′. A weak (or color) automorphism of Γ = (Ω,R) is isomorphism of Γ with
itself. If the induced permutation of colors is the identity permutation then
we speak of a (strong) automorphism.

We denote by CAut(Γ) and Aut(Γ) the groups of all weak and strong
automorphisms of Γ, respectively. Clearly, Aut(Γ) E CAut(Γ). In case
when Γ is a Schurian coherent configuration, the group CAut(Γ) coincides
with the normalizer of Aut(Γ) in symmetric group S(Ω).

An algebraic isomorphism between coherent configurations (Ω,R) and

(Ω′,R′) is a bijection φ : R → R′ such that for all i, j, k ∈ I, pk
ij = pkφ

iφjφ.

An algebraic isomorphism of a coherent configuration m = (Ω,R) with itself
is called an algebraic automorphism of m. The group of algebraic automor-
phisms of m is denoted by AAut(m).

Clearly, CAut(m)/Aut(m) ≤ AAut(m). If the quotient group
CAut(m)/Aut(m) is a proper subgroup of AAut(m) then the algebraic au-
tomorphisms of m which are not induced by φ ∈ CAut(m) are called proper
algebraic automorphisms. We refer to [KliMPWZ07] for a detailed consid-
eration of this concept.

2.4 Mergings

If W ′ is a coherent subalgebra of a coherent algebra W , then the correspond-
ing coherent configuration m′ is called a fusion (or merging configuraition)
of m. (Note that in many cases we abuse notation refering to W and m as
to the same object).
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In case when m = (Ω, 2 − orb(G,Ω)) for a suitable permutation group
G, overgroups of G in S(Ω) provide a natural origin for fusions of m. Thus,
most interesting in a sense fusions are non-Schurian ones, that is those which
do not emerge from a suitable overgroup of (G,Ω).

For each subgroup K ≤ AAut(m), its orbits on the set of relations define
a merging coherent configuration, which is called algebraic merging defined
by K. Again, those algebraic mergings which are non-Schurian are of a
special interest as less predictable combinatorial objects.

If W ′ and W ′′ are coherent subalgebras of a coherent algebra W ,
such that W ′ and W ′′ are not isomorphic and in addition there exists
φ ∈ AAut(W ) that maps W ′ to W ′′, then W ′ and W ′′ form a pair of twins
inside of W .

2.5 Decomposable schemes

Though operations of tensor (direct) and wreath product may be defined
for arbitrary coherent configurations, we will restrict our consideration only
to the case of association schemes. They may be regarded as combinatorial
analogues of similar operations over permutation groups.

If W1, W2 are homogeneous coherent algebras of orders n1, n2 and ranks
r1, r2 respectively, then their tensor product W1 ⊗ W2 is homogeneous co-
herent algebra of order n1n2 and rank r1r2.

Let m1 = (Ω1, R) and m2 = (Ω2, S) be two association schemes of orders
n1, n2 and ranks r1, r2, respectively. Let Ω = Ω1×Ω2. We define on Ω basic
relations IdΩ, ∆i = {((u1, v1), (u2, v2))|(u1, u2) ∈ Ri, 1 ≤ i ≤ r1 − 1} and
Θ1 = {((u, v1), (u, v2))|(v1, v2) ∈ Sj, u ∈ Ω1, 1 ≤ j ≤ r2 − 1}. The systen
m = (Ω, {IdΩ} ∪ {∆i|1 ≤ i ≤ r1 − 1} ∪ {Θj |1 ≤ j ≤ r2 − 1}) turns out to be
an association scheme of order n1n2 and rank r1 + r2 − 1. We use notation
m = m1wrm2 (or m = m1 ≀m2) and call m the wreath product of m1 and m2.

Note that a more general definition of wreath product, see e.g. [Wei76],
[EvdPT00] provides an association scheme which is algebraically (but not
necessarily combinatorially) isomorphic to m1 ≀ m2.

An association scheme is called primitive if all its non-reflexive basic
graphs are connected, otherwise it is imprimitive. An association scheme
is imprimitive if and only if it admits non trivial equivalence relations as
a union of suitable basic relations. Such equivalence relations are called
imprimitivity systems ([BanI84]), alternative names are parabolics ([Hig95]),
closed sets ([Zie96]). For each imprimitive association scheme and for each
imprimitivity system σ we may define a quotient scheme m/σ on the sets
of classes of equivalence relation σ. Following Higman, for a pair (m, σ)
we speak of its rank as a rank of association scheme induced by m on an
arbitrary class of σ. In this case, corank is rank of m/σ. The sum of the
rank and corank of (m, σ) is at most r + 1 where r is the rank of m, with
equality if and only if m is algebraically isomorphic to m1 ≀ m2, where m1 is
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the quotient scheme, while m2 is isomorphic to an induced scheme on classes
of σ.

An imprimitive association scheme is called decomposable if it can be
represented as tensor or (generalized) wreath product of smaller schemes.
Decomposable schemes (together with imprimitive rank 3 schemes) are com-
monly regarded as trivial objects, real interest in theory of association
schemes starts from the investigation of the indecomposable objects (in-
cluding primitive schemes of rank at least 3).

2.6 Equitable partitions

Let Γ = (V,E) be a graph. A partition V = {V1, . . . , Vs} of V is called
equitable with respect to Γ if for all k, l ∈ {1, . . . , s}, the numbers |Γ(v)∩Vl|
are constant for all v ∈ Vk. Here, Γ(v) = {u ∈ V |{u, v} ∈ E} is the neighbor
set of vertex v. Usually an equitable partition of a graph is accompanied by
intersection diagram, which is a kind of quotient graph on which all numbers
|Γ(v) ∩ Vl| are depicted.

A typical source of equitable partitions is orbits on V of a subgroup of
the automorphism group of a graph.

The following proposition should in our eyes be regarded as a folklore
one.

Lemma 2.1. Let m = (Ω, {Ri|i ∈ I}) be an association scheme and τ =

{τ0 = {0}, τ1, . . . , τs} be a partition of I. Define Sj =
⋃

i∈τj

Ri for all 0 ≤

j ≤ s. Let Γj = (Ω, Sj), 0 ≤ j ≤ s. Let x ∈ Ω be a reference vertex and
σ = {{x},Γ1(x), . . . ,Γs(x)} be a partition of Ω into the neighbor sets of x
in the graphs Γ0, . . . ,Γs.

Assume that relations S1, . . . , Ss are symmetric and the adjacency ma-
trices A(Γi) for 2 ≤ i ≤ s are expressible as suitable polynomials in A(Γ1).
If σ is an equitable partition with respect to Γ1 then m′ = (Ω, {Sj |j ∈ [0, s]})
is a merging association scheme of m. Moreover, in this case 〈〈Γ1〉〉 = m′.

2.7 Computer tools

The following computer programs were used by us in order to find new com-
binatorial objects, and to investigate algebraic properties (such as properties
of the automorphism group) of known and new objects.

2.7.1 COCO

COCO is a set of programs for dealing with coherent configurations.
Developed in 1990-2, Moscow, USSR, mainly by Faradžev and Klin

[FarK91], [FarKM94].
The programs include:
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ind - a program for calculating induced action of a permutation group
on a combinatorial structure;

cgr - a program to calculate the centralizer algebra of a permutation
group;

inm - a program to calculate the intersection numbers (also known as
structure constants) of a coherent configuration;

sub - a program to find fusion association schemes of a coherent config-
uration given by its structure constants;

aut - a program to calculate automorphism groups of a coherent config-
uration and of its fusion association schemes.

Usually, those programs are used in the above order. This provides a
computerized way to find all association schemes invariant under a given
permutation group, together with their automorphism groups.

2.7.2 WL-stabilization

Two implementations of the Weisfeiler-Leman stabilization [Wei76] are avail-
able. WL-stabilization is an efficient algorithm for calculating coherent clo-
sure of a given matrix [BabCKP97].

Using available programs, in many cases we have a limit for the possible
order or rank of the coherent closure, or are only interested in finding out
some lower bound for the rank of the closure, in which case an ad hoc simple
calculation is sufficient.

2.7.3 GAP

GAP [GAP], [Sch95], an acronym for “Groups, Algorithms and Program-
ming”, is a system for computation in discrete abstract algebra. The system
supports easy addition of extensions (packages, in gap nomenclature), that
are written in the GAP programming language, which can add new features
to the GAP system.

One such package, which is very useful in algebraic combinatorics is
GRAPE [Soi93]. It is designed for construction and analysis of finite graphs.
GRAPE itself is dependent on an external program, nauty [McK90] in order
to calculate the automorphism group of a graph.

Another package is DESIGN, used for construction and examination of
block designs.

GAP is used in the course of investigations in algebraic combinatorics in
order to:
Construct incidence structures (graphs, block designs, geometries, coherent
configurations, etc).
Calculate automorphism groups of such structures.
Check regularity properties and parameters of structures.
Find cliques in graphs, and substructures of given structures in general.
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Find abstract structure of a group as well as identification of a permutation
group.
Find conjugacy classes of elements and of subgroups of a group.

2.7.4 COCO v.2

While a lot of calculation in algebraic combinatorics are done in GAP, some
algorithms or operations are only available in certain other programs dis-
cussed above. This results in permanent necessity to translate the output of
one program to a format that is acceptable as input of the other program.

The COCO v.2 initiative aims to re-implement the algorithms in COCO,
WL-stabilization and DISCRETA as a GAP package. In addition, the new
package should essentially extend abilities of current version, basing on new
theoretical results obtained since the original COCO package was written.

3 Preliminaries

3.1 Möbius-Kantor configuration 83

A configuration 83 is a regular uniform incidence structure with the param-
eters (v, b, k, r) = (8, 8, 3, 3) which forms a partial linear space, that is any
two distinct points are incident to at most one line. A classical model of 83

is formed by non-zero vectors of the vector space of dimension 2 over GF (3),
considered as points while lines are sets of the form U + v, where U is any
subspace of dimension one of GF (3)2, and v is any non-zero vector.

It immediately follows from the given construction that the point graph
of 83 admits group GL(2, 3) of order 48 as subgroup of its automorphism
group. Moreover, GL(2, 3) is the whole automorphism group.

In fact, 83 is unique up to isomorphism, therefore it is self dual. This
implies that the automorphism group of the Levi (incidence) graph of 83 is
group H of order 96 which is isomorphic to GL(2, 3) : 2. We will call this
Levi graph the Möbius-Kantor graph, or briefly MK-graph. The description
and characterization of 83 goes back to XIXth century. We refer to [Cox77],
[CosL01] for more information about this structure.

A diagram of MK-graph in a form of generalized Petersen graph, briefly
gP-representation (in sense of [FruGW71]) is depicted in Figure 3.1(a).

Another diagram provides a Hamiltonian cycle in the same graph. Both
diagrams (up to labeling) are borrowed from [Cox77]. The reader is invited
to check that we indeed work with a copy of MK-graph. For this purpose,
using black and white labels, we reveal the bipartite partition of the depicted
graph and recognize in it a Levi graph of a suitable partial linear space (note
that the graph does not contain quadrangles.)

The defined group H of order 96 acts transitively on 16 vertices of MK-
graph. It has 3 subgroups of index 2. One of this groups, which stabilizes one
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Figure 3.1: Two diagrams of MK-graph.

part of the bipartite partition is intransitive group isomorphic to GL(2, 3).
Note that GL(2, 3) has unique (up to conjugacy) transitive action of

degree 16 on the cosets of a Sylow subgroup of order 3. Let us denote it
by K. This permutation group K can be regarded as a subgroup of H. To
justify this claim, consider action of Aut(83) on cyclically ordered lines of
83 and define on these objects (regarded as vertices) the same structure of
Levi graph of 83.

In [Cox77], Coxeter suggested a few ways to recognize inside of this group
K the stabilizer, L, of gP-representation which has an easy geometrical
explanation. We will follow these ways, using a moderate modification of
Coxeter’s arguments.

Clearly, gP-representation may be regarded as union of two octagons
(which are induced subgraphs of MK-graph) and a 1-factor. Let us call
these structures gP-octagons and gP-1-factor respectively. By stabilizer of
any of these structures we mean the subgroup of H which preserves the
structure as a whole.

Proposition 3.1. a) Stabilizer L of gP-representation is a group of order
32 which acts transitively on the vertices.

b) Group L is also the stabilizer of gP-1-factor.

c) There are exactly three gP-representations of the MK-graph. The orbit
of gP-1-factor (under the action of H) has length 3.

d) The three gP-1-factors forming the orbit under H are the 1-factors com-
patible with (an arbitrary) gP-representation.

e) Six gP-octagons form one orbit under H.

9



f) Stabilizer M of a gP-octagon is dihedral group D8 of order 16 acting
faithfully on the vertices of the octagon.

g) 12 directed gP-octagons which appear as orientation of a gP-octagon are
split into two orbits of length 6 under the action of K.

h) K may be interpreted as the stabilizer in H of one orbit of directed gP-
octagons.

i) K contains a regular subgroup which is isomorphic to the quasidihedral
(or semidihedral) group of order 16, QD16.

j) MK-graph can be represented as a Cayley graph over QD16.

Proof. We provide a few details of the proof. The remaining arguments are
straight forward (in the proposed sequence of claims).

a) Let g1 = (0, 1, 9, 13, 15, 14, 6, 2)(8, 5, 11, 12, 7, 10, 4, 3, 8),
g2 = (0, 1)(2, 9)(6, 13)(14, 15)(5, 8)(3, 11)(4, 12)(7, 10),
g3 = (0, 3, 15, 12)(1, 11, 14, 4)(2, 7, 13, 8)(5, 9, 10, 6). Simple visual in-
spection confirms that g1, g2, g3 ∈ L. It is also clear that |〈g1, g2, g2〉| =
32. On the other hand it is evident (from geometrical arguments) that
|L| ≤ 32. Thus, L =< g1, g2, g3 > has order 32.

d) Split two gP-octagons on Figure 3.1(a) into two 1-factors. Get together
with corresponding gP-1-factor a set consisting of three 1-factors. This
is a desired orbit of gP-1-factors.

f) M =< g1, g2 >.

g) Consider group N =< g1 >, this is the full stabilizer of directed gP-
octagon (0, 1, 9, 13, 15, 14, 6, 2) in group H. As a subgroup of K, N
has index 6.

h) Consider 6 octagons (0, 1, 9, 13, 15, 14, 6, 2), (0, 8, 10, 14, 15, 7, 5, 1),
(0, 2, 3, 7, 15, 13, 12, 8), (1, 5, 4, 6, 14, 10, 11, 9), (3, 11, 10, 8, 12, 4, 5, 7),
(2, 6, 4, 12, 13, 9, 11, 3).

Consider g1 and g4 = (1, 8, 2)(3, 9, 10)(5, 12, 6)(7, 13, 14). A routine
inspection reveals that g1, g4 preserve the system of above six directed
gP-octagons. Moreover, group < g1, g4 > acts transitively on this
system. Thus, according to (g) the full stabilizer is a transitive sub-
group of H of index 2. Group H has two such subgroups. The one
different from GL(2, 3) does not contain elements of order 8. In fact,
K =< g1, g4 >.

i) Let g5 = (0, 4)(1, 5)(2, 12)(3, 13)(6, 8)(7, 9)(10, 14)(11, 15),
g6 = (0, 1, 9, 13, 15, 14, 6, 2)(3, 8, 5, 11, 12, 7, 10, 4) and consider group
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< g5, g6 >. Simple inspection with the aid of Figure 3.1 (a) shows
that this group stabilizes depicted gP-representation, has index 2 in
L, is transitive, and g5g6g5 = g3

6 , therefore it is isomorphic to QD16,
the quasidihedral group of order 16.

Remarks.

1. Clearly, the suggested proof is Deus ex machine. An alternative may
be to use generators and defining relations as was done originally by
Coxeter.

2. In general (computations with the aid of GAP) MK-graph has three
orbits of 1-factors of lengths 24,6,3, and two orbits of induced octagons
of lengths 24,6. The objects exploited by us are most symmetric and
thus easily visible.

3. MK-graph may be represented as a regular map of type {8, 3} on an
orientable surface of genus 2. The orbit of 6 oriented gP-octagons
used by us is nothing else but those (up to labeling) 6 octagons which
present a map depicted in Figure 20 in [Cox77].

4. The group K is the subgroup of index 2 in H which preserves orien-
tation of the map on the surface.

3.2 4-dimensional cube

We consider well-known structure of the 4-dimensional cube Q4. The ver-
tices of Q4 are binary sequences of length 4, two sequences are adjacent if
they differ in exactly one position. It is convenient to use also a canonical
in a sense labeling of the vertices of Q4 by numbers from [0, 15], where each
number is decimal representation of corresponding binary sequence.

Q4 is bipartite graph with girth 4. All quadrangles of Q4 have an evident
geometrical sense: two from four binary coordinates take a prescribed value
while the remaining two coordinates vary. Clearly, Q4 has

(

4
2

)

· 22 = 24
quadrangles.

It immediately follows from the definition that Q4 may be represented
as a Cayley graph over group E24 with a connection set
X4 = {0001, 0010, 0100, 1000}. The full automorphism group P of Q4 is the
exponentiation S2 ↑ S4 of symmetric group S2 with S4 of order 24 ·4! = 384,
cf. [KliPR88].

The stabilizer of a quadrangle in group P is easily identified with a group
D4 × Z2 of order 16 with the orbits on vertices of length 4, 4 and 8.

According to GAP, Q4 has 272 1-factors in 8 orbits of length 4, 48, 24,
48, 96, 12, 32, 8. We are interested in the two small orbits.
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Figure 3.2: 4-dimensional cube Q4 with a skew 1-factor

The orbit of length 4 is easily recognized as consisting of Cayley graphs
over E24 with a connection set {x}, x ∈ X4. We will call these spanning
subgraphs of Q4 direct 1-factors. Removal of direct 1-factor evidently splits
Q4 into two disjoint copies of 3-dimensional cube Q3.

The orbit of length 8 will be called the orbit of skew 1-factors, a repre-
sentative of it is visible in Figure 3.2 (bold edges).

An explanation of structure of a skew 1-factor: Remove a direct 1-factor,
and start from resulting pair of disjoint copies of Q3. Take a pair of antipodal
vertices in one copy of Q3 (say, {2, 5}). The remaining 6 vertices of the same
Q3 form an induced hexagon (automorphic subgraph in sense of [JonKL00]).
Split the hexagon into two copies of 3 ◦K2, take one of them (with edge set
{{0, 4}, {1, 3}, {6, 7}}). The neighbors of remaining 3 ◦K2 in corresponding
direct 1-factor give three more edges ({8, 9}, {11, 15}, {12, 14}). Now there
is unique way to add two more edges in order to get the depicted skew 1-
factor. Easy combinatorial counting shows that there are 4·2·2

2 = 8 different
possibilities to get skew 1-factor. All skew 1-factors are isomorphic with
respect to the group P = Aut(Q4). Therefore the stabilizer K ′ of a skew
1-factor is a subgroup of order 48 of the group P .

To identify this group K ′ we suggest the reader to remove from Q4

the skew 1-factor depicted in Figure 3.2 and to notice that the remaining
subgraph exactly coincides with a copy of MK-graph in Figure 3.1. Therefore
we conclude that K ′ is a subgroup of index 2 in H.

To distinguish which of the three subgroups we face, let us now add to
the copy of MK-graph in Figure 3.1(a) the same skew 1-factor. We get the
graph in Figure 3.3.

We stress the following features of the depicted figure:

• The evident horizontal symmetry of the MK-graph transforms the de-
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Figure 3.3: MK-graph together with a skew 1-factor of Q4

picted skew 1-factor of Q4 to another one, namely

{{0, 11}, {1, 12}, {2, 5}, {3, 14}, {4, 15}, {6, 8}, {7, 9}, {10, 13}}

in another copy of Q4.

• The colored graph in Figure 3.3 has a transitive automorphism group
(check that the regular group QD16 presented in Section 3.1 preserves
the graph).

• A permutation g1 generating cyclic subgroup of order 8 belongs to K ′.

All this information immediately implies that the full automorphism
group K ′ of the color graph depicted in Figure 3.3 coincides with the group
K = GL(3, 2).

Proposition 3.2. a) The group P = Aut(Q4) contains a transitive sub-
group K which is isomorphic to GL(3, 2).

b) K = GL(3, 2) may be characterized inside of P as the stabilizer of a skew
1-factor.

c) Q4 contains exactly 8 skew 1-factors forming an orbit under action of P .

Proof. As an alternative to the arguments presented above, we suggest the
reader to consider again regular group QD16 = 〈g5, g6〉 and to detect its four
2-orbits with the representatives (0, 1), (0, 2), (0, 4), (0, 8). Union of these
2-orbits provides the arc set of Q4. While first and second orbits consist of
two directed gP-octagons, the fourth is the gP-1-factor, and the third is the
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Figure 3.4: Clebsch graph �5

depicted skew 1-factor. In this fashion we get a geometrical description of a
connection set over QD16, corresponding to Q4, as well as description of a
skew 1-factor as a Cayley graph over QD16.

Remark. The embedding of MK-graph into Q4 used by us is briefly
mentioned by Coxeter in [Cox50], p. 430. He however does not consider
explicitly its group theoretical interpretation.

3.3 Clebsch graph

The Clebsch graph Cl is the unique strongly regular graph with the parame-
ters (v, k, l, λ, µ) = (16, 5, 10, 0, 2). The name was coined by Seidel in [Sei68],
following reference of Coxeter to Clebsch. Sometimes the name is attributed
to the complementary graph. A nice proof of the uniqueness is presented in
[GodR01]. A few models of Cl are known, cf. [BroCN89], [KliPR88].

Usually Cl is identified with the folded 5-cube. Therefore it is considered
as a member of corresponding infinite series of distance regular graphs; this
implies notation �5 for it which will be used by us from now on.

Two more models are depicted in Figure 3.4.
The upper labels of vertices refer to the Cayley graph over E24 with the

connection set X5 = {0001, 0010, 0100, 1000, 1111}. The lower labels refer
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Figure 3.5: Auxiliary graph 5 ◦ K2
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Figure 3.6: A skew system of quadrangles

to local model of graph with respect to special vertex ∅. The neighbors of ∅
are 1-element subsets of [1, 5], non-neighbors are 2-elements subsets of [1, 5]
with evident adjacency between 1-sets and 2-sets. The fact that we have
a desired strongly regular graph is visually observed from the diagram. As
a Cayley graph, �5 has a transitive automorphism group, while the local
model reveals that stabilizer of a point is isomorphic to S5. Finally we get
that G = Aut(�5) ∼= E24 ⋊ S5 is a rank 3 group.

The most famous description for the group G is irreducible Coxeter group
D5, see e.g. [GroB96]. A more naive though very helpful representation is
related to auxiliary graph 5 ◦ K2 as it is depicted in Figure 3.5.

Our group G in these terms may be interpreted as the subgroup (S5 ≀
S2)

pos of even permutations in Aut(5 ◦ K2).
Graph �5 has 705 1-factors in 7 orbits of length 5, 80, 60, 120, 240, 160,

40. Again we are interested in two smallest orbits.
The orbit of length 5 is evident. It consists of the five Cayley graphs

over E24 with connection set {x}, x ∈ X5. (We later on will call X5 frame.)
Removal of any such direct 1-factor from �5 evidently provides a copy of
Q4.

Below we simultaneously consider one more labeling of vertices of �5

borrowed from Q4.
The orbit of length 40 is inherited from the skew 1-factors of Q4. Clearly

five copies of Q4 inside of �5 altogether produce 5× 8 skew 1-factors. Note
that each skew 1-factor of �5 has a natural mate in form of the correspond-
ing direct 1-factor. Easy inspection shows that two such 1-factors together
provide a subgraph of �5 of form 4 ◦ C4, where C4 is a quadrangle. An
example of such structure, which will be called a skew system of quadrangles
is depicted in Figure 3.6.

Finally we mention that �5 has 5·24
3 = 40 induced quadrangles and
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Figure 3.7: Edge decomposition of �5

16·5
2 = 40 edges. G acts transitively on all three sets. We need to describe

the stabilizer of representatives of the discussed structures.
The description of the stabilizer of a skew system of quadrangles follows

from Section 3.2, this is group K = GL(2, 3) in its transitive action.
It is also easy to see that the stabilizer of quadrangle is group D4 × S3.

(Indeed consider for example stabilizer of quadrangle (0, 1, 5, 4). Dihedral
group D4 acts diagonally on this quadrangle together with its “relatives”
(6, 7, 3, 2), (12, 13, 9, 8), and (14, 15, 11, 10). Symmetric group S3 leaves first
quadrangle in place permuting the latter three quadrangles.

More tricky arguments are used in order to describe the stabilizer of
edge, say {12, 14}. A schematic diagram in Figure 3.7 shows edge {12, 14}
together with their neighbors and separately the subgraph induced by the
non-neighbors of the edge. All other edges are omitted from the diagram.
Easy inspection reveals group S4×S2, acting on the bottom part of the dia-
gram. It turns out that each permutation from this group may be extended
to the automorphism of the upper part, showing visually isomorphism with
the group S3 ≀ S2 of automorphisms of octahedron.

Finally we get the following set of generators for the stabilizer of edge in
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�5:

S4 × S2
∼= S3 ≀ S2 =

〈 (0, 9, 2, 11)(1, 6, 10, 15)(3, 4, 8, 13)(5, 7),
(0, 7)(1, 6)(2, 5)(3, 4),

(0, 2)(1, 3)(4, 6)(5, 7)(8, 10)(9, 11)(12, 14)(13, 15)

〉

We bring together requested information about the group G.

Proposition 3.3. Let G = Aut(�5) be the automorphism group of the
Clebsch graph �5.

a) G ∼= E24 ⋊ S5
∼= (S5 ≀ S2)

pos ∼= D5 is a group of order 1920.

b) G acts transitively on each of the following systems:

• 40 quadrangles;

• 40 edges;

• 40 skew systems of quadrangles aka skew 1-factors.

c) Stabilizer of quadrangle is D4 × S3;
stabilizer of edge is S4 × S2

∼= S3 ≀ S2;
stabilizer of skew system is K = GL(2, 3).

d) Third group in (c) acts transitively on the vertex set, while the first group
has orbits of length 4 and 12, and the second group has orbits of length
2, 6 and 8.

e) The graph �5 can be considered as Cayley graph over groups E24 and
QD16.

Proof.

3.4 Cages

The notion of cage goes back to W. T. Tutte (see e.g. [Tut66]) who estab-
lished foundation of the theory for a particular case of cubic graphs (regular
graphs of valency 3).

According to [Sac63] for arbitrary k ≥ 3 and g ≥ 3 there exists at least
one regular graph of valency k and girth g. A regular graph of valency k and
girth g, and such that there are no smaller graphs with the same valency
and girth is called a (k, g)-cage ([Big93]).

There is a natural lower bound for a number of vertices in a (k, g)-
cage, commonly denoted by n0(k, g), which is formulated separately for odd
and even girth (see [Big93]). Graphs which attain this bound are very rare
(Moore graphs for g odd, and incidence (Levi) graphs of generalized polygons
for g even).
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Problem of description of (k, g)-cages is completely solved for a relatively
small amount of values of (k, g).

An important characteristic feature of the classical cages such as Moore
graphs and Levi graphs of generalized quadrangles is that they are coherent
and moreover they are distance regular, therefore a coherent closure of such
graph is a (metrical) association scheme.

In this context it is natural to expect that those cages which are also
coherent are in a sense very close (from the point of view of algebraic graph
theory) to the classical cages.

Cages of valency 3 are investigated with a reasonable success, all of them
are known for girth at most ten, see e.g. [PisBMOG04].

The case of (k, 3)-cages is in a sense degenerate, these are complete
graphs Kk+1.

Cages of girth 4 (projective planes) are classical objects of investigation
in the area of finite geometries.

In this paper we will be slightly interested in the (5, 4)-cage.
Below we consider with more attention cages of girth 5. It is well known

(see e.g. [CamL91]) that non-trivial Moore graphs may exist only for g = 5,
and there are just 3 non-degenerate possibilities for the valency, namely
k = 3, k = 7 or k = 57, leading to strongly regular graphs with k2 + 1
vertices. The unique Moore graph of valency 3 is the Petersen graph, and
the unique Moore graph of valency 7 is the Hoffman-Singleton graph. A
question about the existence of a Moore graph of valency 57 is still open.

The cages of girth 5 and valency 3, 4, 5, 6, 7 have respectively 10, 19, 30,
40 and 50 vertices, all of them are nowadays completely classified. Below
we consider valencies 6 and 7.

Following pioneering paper by C. W. Evans ([Eva79]) we consider in a
given graph Γ = (V,E) set Sn of all cycles (circuits) of length n. Γ is
called a general net if and only if there exists S∗ ⊆ Sn such that given any
edge e ∈ E there are exactly two cycles C1, C2 ∈ S∗ such that e ∈ C1 and
e ∈ C2. In general the girth g ≤ n; when g = n, Γ will be called a general
g net. Moreover Γ is called a general g net cage of valency k if Γ is also a
(k, g)-cage. An embeddable net may be drawn on a surface.

A number of net cages are investigated in [Eva79], including K4, Cube,
Petersen graph and Heawood graph for valency 3. A net of valency 6 and
girth 5 on 40 vertices was constructed by Evans. At the time of publication
of [Eva79] he was not aware precisely that this graph is a cage. We will
consider it below.

3.5 Hoffman-Singleton graph

The unique strongly regular graph HoSi with the parameters (50, 7, 42, 0, 1)
was discovered in 1960 by A. J. Hoffman and R. R. Singleton [HofS60].
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Figure 3.8: Robertson model for HoSi

Original proof of the uniqueness was already established in [HofS60] using
beautiful linear algebra arguments.

N. Robertson in his Thesis [Rob69] suggested his famous pentagon-
pentagram model which is repeated below. Higman in [Hig66] classified
all rank 3 graphs on 50 points with subdegrees 1,7,42. Together with
the proof of the uniqueness of HoSi his result implied description of the
group Aut(HoSi). Explicitly the description appeared in [BenL71] as group
PΣU(3, 52) of order 252000.

A number of beautiful models of HoSi are known, most of them are based
on the use of a certain maximal subgroup of Aut(HoSi), in such fashion they
are collected in the home page of A. Brouwer [Bro].

In this section we will briefly mention a few models which will be later on
revised in a sense using in evident form concept of a coherent configuration.

Robertson model. The original description was purely pictorial (diagram
1.1c in page 12 of [Rob69]). It is repeated here in slightly modified form (cf.
[BonM76]).

Here upper cycles are called pentagrams and low ones pentagons, with
vertex i of Pj joined to vertex i + jk (mod 5) of Qk.

HoSi, the unique Moore graph of valency 7, contains as induced sub-
graphs, smaller Moore graphs of valency 2 and 3. Information about the
equitable partitions, generated by pentagons and Petersen subgraphs, in
principle may be extracted from the analysis of the Robertson model.

Following L. G. James [Jam74], see also [FanS93], let us consider a copy
of pentagon P , set N1(P ) of neighbors of some vertices in P which are not
in P , and set N2(P ) of vertices of distance 2 from P . We get an equitable
partition of HoSi with sizes of cells 5, 25, 20.

A coherent configuration generated by this partition will be considered
in Section 11.

Similarly, following [Jeu83], we realize that HoSi contains one orbit of
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Figure 3.9: 1-factorization of K6

size 525 consisting of induced Petersen graphs. Stabilizer of one such graph
of order 480 will be considered with much detail in Sections 10, 11, see also
Section 3.6 below.

A natural way to construct HoSi is to consider Aut(HoSi) as rank 3
extension of S7. This leads to a consideration of coherent configuration
with 3 fibers of size 1, 7 and 42. Surprisingly, we did not find in literature
an explicit presentation of this configuration. It will be considered below.
First we need auxiliary construction, cf. [CamL91].

Proposition 3.4. a) There are six different 1-factorizations of graph K6,
any two are isomorphic.

b) The automorphism group of 1-factorization of K6 is isomorphic to tran-
sitive action of S5 on 6 points. This action is 3-transitive.

Proof. One of the factorizations is depicted in Figure 3.9. Let g1 =
(0, 1, 2, 3, 4), g2 = (1, 2, 4, 3), g3 = (0, 1)(2, 4). Let H =< g1, g2, g3 >. It
is clear that already < g1 > acts transitively on all five 1-factors, forming
considered 1-factorization F . Permutations g2, g3 also preserve F . The
whole group H acts transitively on 6 points, while < g1, g2 > is a subgroup
of order 20 in stabilizer of point 6 in H. Thus |H| ≥ 120, therefore an orbit
of F in S6 has length at most 6. On other hand, easy to see that any two
of 15 1-factors of K6 belongs to exactly one 1-factorization. Thus, there
are exactly 6 such objects, all of them belong to one orbit, and |H| = 5!,
H = Aut(F).

Let Ω1 = {∅}, Ω2 = [0, 6], Ω3 = FS7 , where FS7 is orbit of F under
action of S7, provided that F is regarded as a system of subgraphs of K7

with isolated vertex 6. Denote Ω = Ω1 ∪ Ω2 ∪ Ω3. The symmetric group
S7 = S([0, 6]) acts naturally on Ω with the orbits Ω1, Ω2, Ω3. Thus we may
consider a coherent configuration H = (Ω, 2 − orb(S7,Ω)).

Proposition 3.5. a) H is rank 15 configuration with fibers of length 1, 7,
42.

b) Representatives and lengths of basic relations are as presented in Table
3.1.
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Ω1 Ω2 Ω3

# valency pair # valency pair # valency pair

Ω1 0 1 (0, 0) 1 7 (0, 1) 2 42 (0, 8)

Ω2 3 1 (1, 0) 4 1 (1, 1) 6 36 (1, 8)
5 6 (1, 2) 7 6 (1, 9)

Ω3 8 1 (8, 0) 9 6 (8, 1) 11 1 (8, 8)
10 1 (8, 7) 12 30 (8, 9)

13 5 (8, 10)
14 6 (8, 17)

Table 3.1: 2-orbits of action (S7,Ω)

c) Merging of relations #1,3,7,10,14 provides a Moore graph on 50 vertices.

Proof. a),b) H has type





1 1 1
1 2 2
1 2 4



. Indeed, taking into account the mode

of action of S7 on Ω1 and Ω2, we immediately justify all numbers between Ω1

and other fibers and inside of Ω2. Clearly, for point x from Ω2 there are just
two possibilities to be in relation with a 1-factorization from Ω3, depending
on x = y or x 6= y, where y is isolated vertex of the 1-factorization.

Now, besides reflexive relation, we may distinguish 3 relations on Ω3,
described via typical representatives:

R12: Isolated vertices of two factorizations are distinct, no pair of 1-
factors from two factorizations, which share two edges.

R13: Factorizations share the same isolated vertex.
R14: Isolated vertices of two factorizations are distinct, any 1-factor from

first factorization shares with a suitable 1-factor from second factorization
two common edges.

For the reader’s convenience list of all elements of Ω, as it is produced
by GAP, is given in Supplement C.

We suggest the reader to check that the relations R12, R13, R14 are
indeed 2-orbits of (S7,Ω3).

c) Let Γ = (Ω, E) be the graph with vertex set Ω and E = R1 ∪ R3 ∪
R7 ∪ R10 ∪ R14. The intersection diagram of Γ (with respect to the vertex
from Ω1) is depicted in Figure 3.10.

The correctness of diagram follows immediately from the description
of basic relations of H. To complete proof it is enough to justify similar
diagram with respect to vertex from Ω2 and from Ω3. We leave this exercise
to the reader.

Remarks.

a) Alternative way to complete proof of (c) is to submit a permutation which
moves the vertex from Ω1 and preserves graph Γ.
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Figure 3.10: Intersection graph of graph Γ

b) The suggested model of Γ = HoSi strictly exploits the exceptional prop-
erty of the number six (see [CamL91]) related to the existence of two
conjugacy classes of S5 in S6.

c) The graph (Ω3, R14) is a distance transitive graph of valency 6 on 42 ver-
tices, which is an antipodal covering of K7. Traditionally, it is described
(see [BroCN89]) as the subgraph of the HoSi induced by its second con-
stituent. Here we provide also its direct construction in terms of 42
1-factorizations of K6 inside of K7.

3.6 Anstee-Robertson graph

We now consider a regular graph R of valency 6 on 40 vertices as it was
originally constructed by Neil Robertson in his thesis [Rob69].

Consider Robertson decomposition of HoSi, remove from it one pentagon
and one pentagram, get the graph induced by the remaining 40 vertices. It is
clear from the construction that the resulting graph R is regular of valency 6,
contains cycles of length 5, and moreover, its girth is equal to 5. According
to Robertson, R was the smallest graph of valency 6 and girth 5 available
to him. A decade later on, this graph was rediscovered or characterized a
few times, each time due to remarkable circumstances.

In [OKeW79] a different model of the graph was suggested. It was proved
that any graph of valency 6 and girth 5 has at least 40 vertices, therefore
the graph is (5, 6)-cage. The uniqueness of the (5, 6)-cage was proved in
[Won79].

C. W. Evans constructed the same graph in his Ph.D thesis (1978) and
presented it in [Eva79]. He proved also that this graph is the unique 5 net
of valency 6 on 40 vertices, guessing that it is a cage.

Finally, R. P. Anstee in [Ans81] (the paper was submitted in 1978) found
his own original way to the graph, presenting its adjacency matrix S as a
solution of the equation

S2 + S = J40 − A + 6I40

where A = A(10◦K4). Moreover in presentation of Anstee the graph appears
as a solution of a suggested analogue of group divisible designs for Moore
graphs. Anstee was the first who considered the question about the structure
of Aut(R). He presented an outline of a proof that Aut(R) ∼= Z4 × S5 is a
group of order 480.
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It is clear from the Robertson model that R together with the Petersen
graph P provides an equitable partition of HoSi. In fact, the stabilizer of
a P inside of Aut(HoSi) is the above group of order 480; this group was
observed in [Jeu83]. The link between R and HoSi is also used in [Haf03].

Our interest in R was raised when we constructed input of Anstee model
to GAP and obtained the same order 480 for the group Aut(R), though
of a different structure. Namely, Aut(R) ∼= Z4.S5, where we get a non-
split extension. As was correctly observed by Anstee, the quotient graph
of R (with respect to the imprimitivity system, consisting of 10 disjoint
independent sets of size 4) is isomorphic to P . However, Aut(P ) is not
embedded to Aut(R) as Anstee was thinking. It seems that this delusion
never was properly discussed in literature.

In fact, there are a few alternative ways to describe Aut(R) as an abstract
group, for example 2S5.2 (see [Bro]).

We discuss below a few remarkable models of R, postponing more de-
tail to Section 10, and exploiting extensively knowledge of the lattice of
subgroups of Aut(R) revealed with the aid of GAP.

Robertson model. The subgroup of Aut(R) which preserves each of 8
cycles in Robertson decomposition is just group Z5 in a semiregular action.

Anstee model. The adjacency matrix S of the graph R discovered by
Anstee has a block form, each of the blocks is a suitable circulant matrix of
order 4. The subgroup of Aut(R) which preserves each of 10 blocks in the
Anstee model is Z4 in a semiregular action.

Remark. The visions of R presented by Robertson and Anstee are
in a sense complementary or in other words orthogonal. In particular, the
detected subgroups Z4 and Z5 are commuting, generating a semiregular
subgroup Z20 in Aut(R). This may serve us as a justification of the used
name for the graph R.

The model coined in [OKeW79] was also reproduced in [HolS93], p. 201.
(Note that both diagrams on this page are relevant to the same model of
R.)

Dihedral model. Aut(R) has a conjugacy class of length 6 consisting of
dihedral groups D10 of order 20. Each such group acts on the vertex set
with four orbits of length 10, leading to rank 88 coherent configuration J
with 4 fibers of equal size and of the type









6 6 5 5
6 6 5 5
5 5 6 6
5 5 6 6









.

Note that here, AAut(J) = CAut(J)/Aut(J) is a certain group of order 128.
One more remarkable model was suggested by Evans which in a sense

amalgamates the models of Anstee and Robertson. We present its modifi-
cation on Figure 3.11.
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Figure 3.11: Hamiltonian model of Anstee-Robertson graph
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Evans Hamiltonian model. We are working precisely with the Anstee
model, labels of the vertices are shifted by −1 to the segment [0, 39]. The
reader may distinguish on a diagram factorization of R into three regular
spanning subgraphs of valency 2. First and second subgraphs are two disjoint
Hamiltonian cycles, namely (0, 25, 17, 22, 14, 39, 11, 32, 4, 29, 1, 26, 18, 23, 15,
36, 8, 33, 5, 30, 2, 27, 19, 20, 12, 37, 9, 34, 6, 31, 3, 24, 16, 21, 13, 38, 10, 35, 7, 28),
(0, 34, 19, 29, 14, 24, 9, 23, 4, 38, 3, 33, 18, 28, 13, 27, 8, 22, 7, 37, 2, 32, 17, 31,
12, 26, 11, 21, 6, 36, 1, 35, 16, 30, 15, 25, 10, 20, 5, 39).

The remainder (shown by bold lines) on the diagram is graph 8 ◦ C5,
consisting of 8 disjoint cycles of length 5. Four of these cycles are
(up to numeration) Robertson pentagons, the other four are pentagrams.
Namely, the cycles P0 = (20, 24, 28, 32, 36), P1 = (21, 25, 29, 33, 37), P2 =
(22, 26, 30, 34, 38), P3 = (23, 27, 31, 35, 39) and Q0 = (0, 8, 16, 4, 12), Q1 =
(1, 9, 17, 5, 13), Q2 = (2, 10, 18, 6, 14), Q3 = (3, 11, 19, 7, 15).

Let g1 = (0, 17, 14, 11, 4, 1, 18, 15, 8, 5, 2, 19, 12, 9, 6, 3, 16, 13, 10, 7)
(20, 37, 34, 31, 24, 21, 38, 35, 28, 25, 22, 39, 32, 29, 26, 23, 36, 33, 30, 27),
g2 = (4, 16)(5, 17)(6, 18)(7, 19)(8, 12)(9, 13)(10, 14)(11, 15)(20, 22)(21, 23)
(24, 38)(25, 39)(26, 36)(27, 37)(28, 34)(29, 35)(30, 32)(31, 33).

The following observations may be easily confirmed visually:

• The group 〈g4
1〉

∼= Z5 is a subgroup of the stabilizer of the Robertson
decomposition.

• The group 〈g5
1〉

∼= Z4 is a subgroup of the stabilizer of the Anstee
decomposition.

• The group 〈g1〉 ∼= Z20 preserves both Hamiltonian cycles in the Evans
model.

• Permutation g2 exchanges the two Hamiltonian cycles.

• The group 〈g4
1 , g2〉 ∼= D5.

• The group H = 〈g1, g2〉 ∼= Z4 × D5 is group of order 40 acting with
two orbits of length 20.

Remark. Existence of group H justifies in part origin of the “optical”
group-theoretical illusion discussed above. This is the largest subgroup of
Aut(R) which may be presented as direct product of Z4 with a subgroup of
the automorphism group of the quotient graph P .

4 Total graph coherent configurations

Let Σ = (V,E) be a graph. The total graph T (Σ) is the graph with the
vertex set V ∪ E, two such vertices are adjacent in T (Σ) if and only if they
are adjacent or incident in Σ. (Here edges of Σ are incident if they have a
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joint vertex.) The concept of a total graph was suggested and investigated
by M. Behzad et al, see e.g. [BehC66], [Beh70].

Example 4.1. T (K4)

1 2

34

{1,2}

{1,3}
{1,4} {2,3}

{2,4}

{3,4}

Figure 4.1: Total graph of graph K4

Figure 4.1 depicts a diagram of the total graph of the complete graph K4.

We will consider a coherent closure of T (Σ) which will be called total
coherent configuration of Σ. Our initial interest in this new concept was
motivated by its possible application to the graph isomorphism problem,
see Section 12.

Recall that in some exceptional cases the total graph T (Σ) may have
more rich automorphism group than original graph Σ. For example, while
complete graph Kn, n ≥ 2 has automorphism group Sn, the total graph
T (Kn) is isomorphic to the triangular graph T (n+1), see [BehCN68]. There-
fore Aut(T (Kn)) ∼= Sn+1 is a proper overgroup of Sn.

In case n = 4 the fact of isomorphism T (K4) ∼= T (5) may be easily
observed from Figure 4.1. Indeed, after a substitution of vertex i by {i, 5}
for 1 ≤ i ≤ 4 we recognize in diagram graph T (5).

Looking for a non-trivial generalization of this simple observation we
have arranged a number of computer algebra experiments with total graph
coherent configurations for certain relatively small strongly regular graphs.
Our goal was to detect in a total configuration for Σ a merging association
scheme with a non-trivial overgroup of the group Aut(Σ). Some of our
results are discussed below.
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Let us consider the total coherent configuration T (n) of the triangular
graph T (n) (recall that T (n) is the line graph L(Kn) of the complete graph
Kn). In more detail we first construct the total graph T(n) of the triangular
graph T (n). The vertices of T(n) are the edges and the paths of length 2 of
Kn, and two vertices of T(n) are adjacent if they both are edges of Kn with
a common end, or else they have a common edge of Kn. Clearly T(n) has
n(n−1)

2 + (n − 2)n(n−1)
2 = n(n−1)2

2 vertices.
While T (n) is simply the coherent closure of T(n), we also consider the

Schurian coherent closure of T(n), denoted by S(n). Here S(n) = (Ω, 2 −
orb(G,Ω)), a coherent configuration formed by the 2-orbits of the group
G = Aut(T(n)) acting on the vertex set Ω of T(n). It is well known that G
is isomorphic to Sn for n > 4.

On this stage it is clear that T (n) is a certain merging of S(n). Using
COCO for small values of n we observed that rank and intersection numbers
of S(n) became in sense stable, starting from n ≥ 9. This observation was
confirmed for larger values of n.

Theorem 4.1. Let n ≥ 9, then:

a) S(n) has 2 fibers and 25 relations;

b) The intersection numbers as functions of n may be represented by a poly-
nomial function on n of degree at most 3;

c) S(n) = T (n);

d) S(n) has only two merging association schemes:

rank 3 scheme with a basic graph isomorphic to n(n−1)
2 ◦Kn−1, and rank 4

scheme isomorphic to wreath product m(T (n)) ≀m(Kn−1), where m(T (n))
is rank 3 scheme generated by T (n), m(Kn−1) is a trivial scheme with
one class on n − 1 points.

Proof. Details are presented in [Ziv]. Currently the proof is computer de-
pendent. Parts (a) and (b) are proved on a theoretical level. Using COCO
we find intersection numbers of S(n) for n = 9, 10, 11, 12 and after that
determine polynomial expressions of intersection numbers with the aid of
Lagrange interpolation. On the final stage, using symbolic computations
with polynomials we arrange search for possible mergings, solving for each
separate case suitable systems of Diophantine equations.

Remarks.

1. Part (c) of Theorem 4.1 is also valid for 4 ≤ n ≤ 8. This was checked
by combining computations with COCO and use of implementation of
WL-closure algorithm.
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2. For n = 6, 7, 8 T (n) has still 25 basic relations, while for n = 5 there
are 24 basic relations.

3. Two standard mergings described above appear also for 5 ≤ n ≤ 8.
For n 6= 5, 7 there are no other (non-trivial) mergings.

4. For n = 7 we get a non-trivial exceptional merging which is of inde-
pendent interest. It corresponds to an embedding of symmetric group
of degree 7 to the group U(4, 3).22 of order 13063680 and provides a
new model for the unique Zara graph on 126 vertices, cf. [BloB84].
This case will be considered in [KliZJ].

5. For n = 4 we get rank 18 configuration which has altogether 7 merging
association schemes of ranks 3 and 4. These schemes are, however,
easily predictable, therefore we avoid detailed description of them.

It remains to pay a special attention to the case n = 5, which in fact was
the origin of our interest in total graph configurations.

Example 4.2. Total configuration T (5).

We start from S5 = 〈(0, 1, 2, 3, 4), (0, 1)〉. Using COCO we get the fol-
lowing labeling of the set of vertices of T(5):

0 {0, 1} 1 {1, 2} 2 {2, 3} 3 {0, 2}
4 {3, 4} 5 {1, 3} 6 {0, 4} 7 {2, 4}
8 {0, 3} 9 {1, 4} 10 {{0, 1}, {1, 2}} 11 {{1, 2}, {2, 3}}
12 {{0, 1}, {0, 2}} 13 {{2, 3}, {3, 4}} 14 {{0, 2}, {2, 3}} 15 {{1, 2}, {1, 3}}
16 {{0, 4}, {3, 4}} 17 {{1, 3}, {3, 4}} 18 {{2, 3}, {2, 4}} 19 {{0, 2}, {0, 3}}
20 {{0, 1}, {0, 4}} 21 {{1, 4}, {3, 4}} 22 {{0, 4}, {2, 4}} 23 {{0, 3}, {3, 4}}
24 {{1, 3}, {1, 4}} 25 {{0, 1}, {1, 4}} 26 {{0, 2}, {0, 4}} 27 {{0, 1}, {0, 3}}
28 {{1, 4}, {2, 4}} 29 {{0, 4}, {1, 4}} 30 {{0, 2}, {2, 4}} 31 {{0, 3}, {0, 4}}
32 {{0, 2}, {1, 2}} 33 {{0, 1}, {1, 3}} 34 {{1, 2}, {1, 4}} 35 {{0, 3}, {1, 3}}
36 {{1, 2}, {2, 4}} 37 {{1, 3}, {2, 3}} 38 {{0, 3}, {2, 3}} 39 {{2, 4}, {3, 4}}

COCO returns a rank 24 coherent configuration T (5) with two fibers,
Ω1 = [0, 9] and Ω2 = [10, 39]. The following table describes representatives
of 24 basic relations of T (5):

0 (0, 0) 1 (0, 1) 2 (0, 2) 3 (0, 10)
4 (0, 11) 5 (0, 13) 6 (0, 15) 7 (0, 29)
8 (10, 0) 9 (10, 2) 10 (10, 3) 11 (10, 4)
12 (10, 5) 13 (10, 10) 14 (10, 11) 15 (10, 12)
16 (10, 13) 17 (10, 14) 18 (10, 15) 19 (10, 17)
20 (10, 18) 21 (10, 22) 22 (10, 24) 23 (10, 28)

COCO also finds 9 non-trivial merging association schemes of T (5) as
follows:

1. subscheme of rank 5 by merging (0,13)(2,5,11,6,12,22,19,20,14)*

(7,10,21)(1,3,8,15,18,16)(4,9,17,23)

2. subscheme of rank 5 by merging (0,13)(2,5,11,22,14)(7,10,21)*

(1,3,8,4,9,15,18,16,17,23)(6,12,19,20)

3. subscheme of rank 5 by merging (0,13)(2,7,10,3,8,22,19,20,16)*

(5,11,15)(1,6,12,21,18,14)(4,9,17,23)

4. subscheme of rank 5 by merging (0,13)(2,7,10,22,16)(5,11,15)*

(1,6,12,4,9,21,18,14,17,23)(3,8,19,20)
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5. subscheme of rank 4 by merging (0,13)(2,5,11,6,12,22,19,20,14)*

(7,10,21)(1,3,8,4,9,15,18,16,17,23)

6. subscheme of rank 4 by merging (0,13)(2,7,10,3,8,22,19,20,16)*

(5,11,15)(1,6,12,4,9,21,18,14,17,23)

7. subscheme of rank 3 with parameters (40,3,2) by merging (0,13)*

(2,5,11,1,6,12,3,8,4,9,22,15,18,19,20,14,16,17,23)(7,10,21)

8. subscheme of rank 3 with parameters (40,12,2) by merging (0,13)*

(2,5,11,7,10,1,6,12,3,8,22,21,15,18,19,20,14,16)(4,9,17,23)

9. subscheme of rank 3 with parameters (40,3,2) by merging (0,13)*

(2,7,10,1,6,12,3,8,4,9,22,21,18,19,20,14,16,17,23)(5,11,15)

Finally, COCO returns orders and ranks of the automorphism group of
each of the schemes, confirming that all nine schemes are Schurian.

merging rank |Aut| subdegrees

1 5 1920 1,12,12,12,3
2 5 7680 1,24,6,6,3
3 5 1920 1,12,12,12,3
4 5 7680 1,24,6,6,3
5 4 7608405715845120 = 23331151 1,24,12,3
6 4 7608405715845120 = 23331151 1,24,12,3
7 3 230078188847156428800 = 2383145271 1,36,3
8 3 51840 1,27,12
9 3 230078188847156428800 = 2383145271 1,36,3

We are now making first attempt to recognize these schemes, using GAP
where it is necessary.

Two isomorphic schemes of rank 3 correspond to wreath product S10 ≀S5;
one scheme with group of order 51840 has as class of valency 12 the point
graph of a classical generalized quadrangle Q(4, 3). Two isomorphic schemes
of rank 4 are copies of m(T (5)) ≀ m(K4) as was mentioned above.

Thus we are faced with necessity to identify four rank 5 schemes which
on this stage should be regarded as pleasant surprises. Indeed, those are
sporadic examples which do not have their analogues for larger values of n.

Using GAP we immediately recognize that pairs of schemes having the
same order of automorphism groups are isomorphic. We postpone to next
sections consideration of the scheme with group of order 7680.

Proposition 4.2. a) Total graph coherent configuration T (5) among other
mergings has two isomorphic copies of association scheme m with 4
classes of valency 12, 12, 12 and 3.

b) m is a Schurian association scheme. The group Aut(m) is rank 5 group
of order 1920 isomorphic to E16 ⋊ S5.

c) One of the classes of valency 12 in scheme m represents the point graph
of a generalized quadrangle of order 3.
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d) This generalized quadrangle is isomorphic to Q(4, 3).

e) Another of classes of valency 12 corresponds to the direct product of Pe-
tersen graph with empty graph on 4 vertices.

f) Class of valency 3 represents imprimitive strongly regular graph 10 ◦K4.

g) The remaining class of valency 12 is connected graph of diameter 2 and
girth 3 which generates the whole scheme m.

Proof. Parts of the current proof are based on the analysis of the results of
computations with the aid of COCO and GAP. On this stage we wish just
to give a computer free proof of part (c) which is of a certain independent
interest, providing a non-standard model for generalized quadrangle of order
3 which turns out to be isomorphic to Q(4, 3).

According to presented above labeling the considered graph has set of
directed arcs R4 ∪R9 ∪R17 ∪R23. Relations R4, R9, as well as R17, R23 are
pairs of opposite antisymmetric 2-orbits. Thus, after symmetrization we get
an undirected graph with vertex set Ω = Ω1 ∪Ω2 and edge set E = E1 ∪E2,
with the following typical representatives:
Ω1: {a, b}, |Ω1| = 10;
Ω2: {{a, b}, {b, c}}, |Ω2| = 30;
E1: {{a, b}, {{b, c}, {c, d}}}, |E1| = 120;
E2: {{{a, b}, {b, c}}, {{a, c}, {c, d}}}, |E2| = 120.

Here typical means that a, b, c, d, e represent pairwise distinct elements
of the set [0, 4].

It is clear that graph Γ = (Ω, E) is a regular graph of valency 12 on 40
vertices. A simple inspection reveals that Γ has exactly 40 maximal cliques
of size 4 which form one orbit under the action of the symmetric group S5.
A typical description of such clique is depicted in Figure 4.2.

a

bc

d

e

a

bc

d

e

a

bc

d

e

a

bc

d

e

Figure 4.2: Line of Q(4, 3)

Each such clique is uniquely determined by a diagram in Figure 4.3.
We have set L consisting of 5 · 4 · 2 such possible diagrams which

correspond to the 40 lines of a regular and uniform incidence structure
S = (Ω, L). It remains to check that S is indeed a generalized quadrangle.
Note that stabilizer of a line of S in group S5 is a cyclic group of order 3
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a

bc

d

e

Figure 4.3: Structure corresponding to line of Q(4, 3)

generated by (a, b, c). Group 〈(a, b, c)〉 has 14 orbits on Ω (4 on Ω1 and 10
on Ω2). 12 of those orbits correspond to the points not on a prescribed line.
Routine inspection for a representative of each of these 12 orbits shows that
there is exactly one line in S through a considered point which intersects a
prescribed line.

After discovering of exceptional mergings in T(5) we searched in liter-
ature and realized that part of results presented in Proposition 4.2 were
known before. This directed our interest to a more systematic investigation
of Higmanian association schemes, see next sections. Note however that the
above model of Q(4, 3) seems to be new.

It was quite attractive to arrange hunting for other total coherent con-
figurations admitting exceptional mergings. Because rank of such configu-
rations drastically increases with the increasing of the rank of Aut(Σ), there
was evident sense to consider as initial objects certain rank 3 graphs.

The case Σ = L2(n) provides another well known classical series of rank
3 graphs, cf. [Sei67]. The total coherent configurations generated by these
lattice square graphs were completely investigated in the same fashion as
in Theorem 4.1 (see [Ziv]). However, this class of configurations does not
provide surprises.

Another interesting option for Σ is provided by the Moore graphs.
The smallest degenerate Moore graph is pentagon. Clearly its total

configuration contains the Petersen graph. The classical diagram, repeated
below, represents vertices of pentagon as external cycle while vertices of the
internal cycle correspond to edges of the external one (see [KliZJ] for more
details).

The total configuration for Petersen graph does not contain mergings,
while the total graph of its complement, the triangular graph T (5) was
presented in this section as origin of all project.

Similarly, the total graph configuration for the Hoffman-Singleton graph,
HoSi of valency 7 on 50 vertices does not have mergings at all. However,
an exceptional merging for the total configuration of the complement, HoSi
provides a very interesting primitive Schurian rank 5 association scheme on
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{0,1}

{2,3}

{0,4}{1,2}

{3,4}

{0,3}

{0,2}

{2,4}

{1,4}

{1,3}

Figure 4.4: Diagram of the Petersen graph

1100 vertices. In our eyes this scheme provides a fresh alternative for con-
sideration of a classical embedding of the automorphism group Aut(HoSi)
to the automorphism group of the Higman-Sims graph (see again [KliZJ] for
details).

We postpone to the very end of our paper some speculations about the
total configuration of the complement of a possible Moore graph of valency
57.

5 Rank 5 imprimitive association schemes: Hig-

man’s classification

In comparison with ranks 3 and 4, classification of rank 5 association schemes
is still less developed. Note that 5 is the largest rank for which arbitrary
scheme is commutative ([Hig75]). This, in principle, creates good opportu-
nities for the use of classical feasibility conditions for commutative schemes.
According to the use of such descriptors as symmetric and non-symmetric,
primitive and imprimitive, metric or co-metric schemes, one may distinguish
a large number of possibilities.

Information about metric schemes, that is distance regular graphs of
diameter 4, may be found in [BroCN89]. Non-symmetric schemes are split-
tings of corresponding rank 3 or rank 4 schemes. It seems rather difficult to
suggest a reasonable classification of all primitive rank 5 schemes.

Following [Hig95] we restrict ourselves to considering of symmetric im-
primitive schemes of rank 5. Because 5 is prime, each decomposable scheme
is wreath decomposable. We have exactly three possibilities for the rank
and corank of a wreath decomposable scheme: (3, 3), (2, 4), (4, 2). Clearly
the decomposition of such rank 5 scheme is reduced to the consideration of
smaller ranks.

It was Higman who suggested in [Hig95] to consider the following three
classes of symmetric imprimitive schemes containing a parabolic E:
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Class of E I II III
rank of E 3 2 2
corank of E 2 3 2

If quotient scheme for class II is imprimitive then the considered global
scheme H has one more parabolic, E′, which has rank 3. In this case, scheme
H may be also attributed to class I. Clearly class III has empty intersection
with classes I and II.

For each of three possible classes Higman provided in [Hig95] descrip-
tion of corresponding intersection matrices and character-multiplicity tables.
There are interesting examples of schemes belonging to class I and to inter-
section of classes I and II, in particular those which appear from classical
triality associated with groups O+

8 (q) as well as sporadic examples associated
with the groups L3(4), U6(2) and U3(5).

A family of instances of class III schemes which goes back to Ph.D thesis
[Cha94], fulfilled under supervision of Higman, is also mentioned.

In what follows we will regard schemes belonging to class II but not to
class I as proper class II schemes. Surprisingly, no one example of such
scheme is mentioned in [Hig95]. Let us make a more accurate glance on this
possibility.

Assume that H is an association scheme on set Ω consisting of nv points.
Let E be an equivalence relation (parabolic) in H with n classes of size v. Let
one of the classes of the quotient scheme on the set Ω/E be a strongly regular
graph with n vertices and the parameters k, l, λ, µ, r, s, f, g in a traditional
notation, here of course n = 1 + k + l. Let H be a proper class II scheme of
rank 5.

Proposition 5.1. a) The valencies of H have the form v0 = 1, v1 = v − 1,
v2 = kS, v3 = k(v − S), v4 = lv.

b) The character-multiplicity table is












1 v − 1 kS k(v − S) lv
1 v − 1 rS r(v − S) −(r + 1)v
1 v − 1 sS s(v − S) −(s + 1)v
1 −1 x1 −x1 0
1 −1 x2 −x2 0













1
f
g
z1

z2

here S is an extra parameter, 1 ≤ S < v, x1, x2 are the roots of equation
x2 − ( rv

S
− λ(v − S))x − kS(v−S)

v−1 = 0, τ = p2
33 one more extra parameter,

and z1 = n(v−1)x2

x2−x1
, z2 = n(v−1)x1

x1−x2
, z1 + z2 = n(v − 1).

c) 0 < µ < k.

Proof. Formulas in parts (a) and (b) are given in [Hig95], we just improve a
misprint in value for v3 occurred on page 213. Part (c) follows immediately
from the definition of proper class II scheme.
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In fact, paper [Hig95] provides much more various helpful information,
including intersection matrices, certain consequences of orthogonality rela-
tions, restrictions caused by the Krein conditions.

An interesting question is to find the smallest example (with respect to
the number nv of vertices) of a proper class II scheme. Each symmetric
association scheme on up to 15 vertices is Schurian, thus we have inspected
the catalog [ConHM98], which reveals that no such scheme is available, see
also Section 12.

To the best of our knowledge the scheme m considered in proposition
4.2 is the only example of proper class II scheme which appears before in
literature. For the first time in evident form this scheme was presented in
[ChaH00] though its idea goes back to [DezD94]. Existence of this example
implied our interest to a systematic consideration of all possible proper class
II schemes of rank 5 on 40 vertices which forms the main target of this article.

Proposition 5.2. a) There are just four following possibilities for the pa-
rameters of a rank 5 proper class II scheme on 40 vertices with v = 4:

Case k l S v0 v1 v2 v3 v4

a1 6 3 2 1 3 12 12 12
a2 6 3 1 1 3 6 18 12
a3 6 3 2 1 3 6 6 24
a4 3 6 1 1 3 3 9 24

b) There is no scheme corresponding to the class a4.

Proof. Part (a) follows immediately from the previous Proposition. Assume
that there exists a scheme corresponding to the case a4. Let us consider
its BM-algebra 〈A0, A1, A2, A3, A4〉. Here A1 is the adjacency matrix of a
parabolic relation. It is clear that A2

2 = 3A0 +p1
22A1+p2

22A2. If p1
22 = 0 then

A2 is also corresponding to a parabolic relation in contradiction to proper
class II property.

If p1
22 6= 0 then p2

12 is also non-zero. This implies that p3
12 = 0 and

p4
12 = 0. We get that A1 and A2 correspond to parabolic, however this is

impossible in principle, because (1 + 3 + 3) 6 |40.

In next sections we will completely characterize cases a1 and a2, and will
prove existence of scheme corresponding to case a3.

6 Classical Deza graph on 40 vertices

In this section we consider with much more detail coherent configuration
m presented in Proposition 4.2. Our goal is to achieve a computer free
interpretation of m jointly with Aut(m) and to reveal its extra significant
properties. Here m represents example associated to case a1 in Proposition
5.2. The value of the extra parameter τ is equal to 4.

34



In fact, slightly routine computations taking into account restrictions on
the parameters show that this is the only possible value in case a1.

6.1 Ridge graph

A notion of ridge graphs was introduced by A. Deza and M. Deza in
[DezD94], see also [DezH03], [DezGP06]. A certain class of high dimen-
sional polyhedra Cn was considered. The vertices of the ridge graph of a
polyhedra Cn are the facets of Cn, two facets being adjacent if and only if
their intersection is a face of codimension 2 of Cn.

According to [DezD94] with correction of misprint which appeared in

[DezH03] the ridge graph Γn is regular with valency 2(n−3)(n2−7)
3 and any

non-adjacent pair of vertices have either 2(n−3)(n2−13)
3 or 2(n−3)(n2−16)

3 + 2
common neighbors.

In our presentation the complement Γ5 of the ridge graph Γn in case
n = 5 is of a particular interest. Up to the used notation the vertices
of Γ5 are 3-element subsets {i, j, k} of [1, 5] together with pairs ({i, j}, k)
(we are again using typical notation, so i, j, k represent different elements.)
Altogether we have 10 + 30 = 40 vertices.

Neighbors of {i, j, k} are edges of the form ({i, j}, k) (3 such neighbors)
and ({i, l}, j) (12 such neighbors).

Neighbors of ({i, j}, k) are {i, j, k} (1), {i, k, l} (4), ({i, k}, j) (2),
({i, k}, l) (4), ({i, l}, j) (4).

An easy inspection shows that the edge set of graph Γ5 is the union of
the edge sets of basic graphs of m of valency 3 and 12 which are defined by
the merging of the relations (7, 10, 21, 4, 9, 17, 23) in the total graph configu-
ration T (5). This confirms relevance of the graph Γ5 and related structures
to our considerations.

6.2 Deza graphs

Another important notion of Deza graph also goes back to [DezD94]. In
evident form the concept was introduced in [EriFHHH99] as a generalization
of strongly regular graphs. Namely a regular graph is a Deza graph if the
number of common neighbors of two distinct vertices takes one of two values
(not necessarily dependent on the adjacency of the two vertices).

As it is mentioned in [EriFHHH99], some Deza graphs may be con-
structed as a certain merging of classes in a symmetric association scheme.
A simple criterion is formulated which allows to detect the mergings which
lead to Deza graphs.

The notion of a Deza graph has also a natural formulation in terms of
matrices. Suppose that Γ is an n-vertex graph with adjacency matrix M ,
while A and B are (0, 1)-matrices such that A + B + I = J .
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Then Γ is an (n, k, b, a) Deza graph if

(∗) M2 = aA + bB + kI

Note that Γ is strongly regular if and only if in (∗) we get that A or B is M .
According to this definition, both matrices A and B may be regarded as

adjacency matrices of suitable graphs ΓA and ΓB. In this case, ΓA and ΓB

are called Deza children (recall that [DezD94] was written by Antoine and
Michel Deza). The cases when Deza children are strongly regular graphs are
of a special interest. This is exactly the case on 40 vertices considered in
the original paper [DezD94] and which is subject of our consideration. We
will call this original Deza graph the classical Deza graph.

6.3 Deza family in a Higmanian house

We are now in a position to suggest an axiomatization for considered objects.

Definition 6.1. Assume we have a Deza family on nv points consisting of
Deza graph Γ and Deza children ΓA and ΓB with adjacency matrices M , A
and B respectively. Assume that S is an adjacency matrix of disconnected
graph n ◦ Kv, such that S + M + A′ + B + I = J , S + A′ = A.

Assume in addition that one of the matrices A, B, say B is adjacency
matrix of a suitable strongly regular graph ∆ = ΓB. If 〈S,M,A′, B, I〉 is a
symmetric Higmanian rank 5 association scheme of class II then the scheme
will be called a Higmanian house for Deza family (Γ,ΓA,ΓB).

Note that Deza family (Γ,ΓA,ΓB) together with equivalence relation
(spread) n ◦ Kv defines a rank 5 color graph which, in principle, may not
correspond to an association scheme.

Making a short deviation we will consider a simple property of wreath
product of association schemes.

Let H = (Ω, {R0, R1, . . . , Rl, S1, . . . , Sm}) be a wreath product H1 ≀ H2

of two association schemes with l and m classes as it was defined in Section
2. Assume that A1, . . . , Al, B1, . . . , Bm are the basic matrices corresponding
to the classes of H.

Proposition 6.1. For H = H1 ≀ H2 (with notation as above) for each 1 ≤
i ≤ l and 1 ≤ j ≤ m is fulfilled

AiBj = BjAi = vjAi,

where vj is the valency of a basic graph Γj of H2.

Proof. If ((a, b), (e, f)) ∈ Ri, then for any pair (c, d) such that
((a, b), (c, d)) ∈ Ri and ((c, d), (e, f)) ∈ Sj, c = e, (d, f) ∈ Γj, therefore
the amount of d is then valency of Γj.

On the other hand, if ((a, b), (c, d)) ∈ Ri, ((c, d), (e, f)) ∈ Sj then c = e
and (a, c) is in basic relation i of H1, so the same is true for (a, e) and
((a, b), (e, f)) is in Ri.
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Proposition 6.2. Let H = (Ω, {R0, R1, . . . , Rl, S1}) be a wreath decom-
posable association scheme with equivalence relation E = R0 ∪ S1 which is
isomorphic to H1 ≀ H2, where H2 is a scheme with one class defined by re-
striction of S1 on any of equivalence classes of E. Assume that relation R1

is split into a disjoint union of two symmetric relations T1 and T2.
Assume also that

(a) there exists α such that |T1(x)∩E(y)| = α for each pair (x, y) ∈ S1 and

(b) (A(T1))
2 ∈ O :=< A0, A(T1), A(T2), A2, . . . , Al, B1 >,

then the color graph (Ω, {R0, T1, T2, R2, . . . , Rl, S1}) forms an association
scheme.

Proof. By definition any product of two of matrices A0, A1, . . . , Al, B1 be-
longs to O. Let us prove that product of A(T1) and any of basic matrices
also belongs to O. It is trivially true for A0, and for A(T1) by condition (b).
Condition (a) implies that A(T1) · B1 = (α − 1)A(T1) + αA(T2) ∈ O.

Now for each i ≥ 2 we get according to Proposition 6.1, that AiB1 =
v1Ai. Therefore (A0 + B1)Ai = (v1 + 1)Ai or Ai = 1

v1+1(A0 + B1)Ai. Thus

A(T1)Ai =
1

v1 + 1
A(T1)(A0 + B1)Ai =

=
1

v1 + 1
(A(T1) + (α − 1)A(T1) + αA(T2))Ai =

=
1

v1 + 1
(αA(T1) + αA(T2))Ai =

=
1

v1 + 1
αA1Ai ∈ O

Now because product of A(T1) and of A1 with any of basic matrices of O

belongs to O, this is also true for product of A(T2) = A1 − A(T1), with the
same matrices.

6.4 Master coherent configuration on 120 points

Let G = Aut(�5) as it appears in Section 3.3. Let K = GL(2, 3) the
automorphism group of a skew 1-factor (aka skew system of quadrangles) in
�5, Q = D4 ×S3 the automorphism group of a quadrangle and T = S4 ×S2

the automorphism group of an edge in �5.
We consider Schurian coherent configuration n which appears from the

action of G on the cosets of Q, T and K in G. Clearly, this is a configuration
on 120 points with 3 fibers of size 40. The configuration n plays a central
role in our presentation, in a sense it may be considered as a very weak
analogue of configurations coming from triality (see Section 12).

According to geometric interpretation developed in Section 3.3 we prefer
to consider points of n as all possible quadrangles, edges and skew systems
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fiber quadrangles edges skew 1-factors

quadrangles 1,3,12,12,12 4,12,12,12 4,12,24

edges 4,12,12,12 1,3,4,8,24 8,8,24

skew 1-factors 4,12,24 8,8,24 1,3,4,8,24

Table 6.1: Valencies of relations in n

in �5. Initial information about n may be easily attained with the aid of
COCO.

Proposition 6.3. a) n is rank 35 configuration of type





5 4 3
4 5 3
3 3 5



 with

valencies of basic relations presented in Table 6.1;

b) Aut(n) = G;

c) restriction of n on first fiber defines association scheme m considered in
Section 4;

d) restriction of n on second or third fibers defines rank 5 schemes which
are not algebraically isomorphic;

e) rank 16 configuration on first and third fibers has a merging rank 5 scheme
coming from GQ(3);

f) rank 16 configuration on first and second fibers has two non Schurian
merging schemes of rank 6 and 5.

Proof.

Association schemes mentioned in (d) will be discussed in next sections.
Below we provide computer free interpretations of a few results related to
claims in Proposition 6.3.

Proposition 6.4. Consider action of group G on the set Ω of 40 quadrangles
of �5.

a) 2 − orb(G,Ω) = (R0, R1, R2, R3, R4, R5); explanation of relations is pre-
sented in Table 6.2.

b) R0 ∪ R1 is an equivalence relation.

c) R2 is an edge set of Deza graph.

d) R3 is an edge set of a point graph of a generalized quadrangle.

e) R4 is an edge set of wreath product of the Petersen graph with the empty
graph E4 on 4 vertices.
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invariants of representatives
No. representative common

vertices
common
edges

skew or
direct
system

valency name

0 (0, 1, 5, 4) 4 4 n/a 1 Loops
1 (2, 3, 7, 6) 0 0 direct 3 Spread
2 (0, 1, 3, 2) 2 1 n/a 12 Deza
3 (8, 9, 11, 10) 0 0 skew 12 GQ(3)
4 (3, 11, 4, 12) 1 0 n/a 12 Petersen[E4]

Table 6.2: 2-orbits of association scheme m

Proof. a) Let us consider again quadrangle (0, 1, 5, 4) as a reference one.
Using methodology of description of 2-orbits of transitive permutation
groups described in [FarKM94], we present in Table 6.2 five more rep-
resentative quadrangles, showing for them number of common vertices,
edges, and extra comments. The amount of quadrangles sharing with the
representatives the same values of considered invariants follows from easy
combinatorial counting. Thus it remains only to confirm by computation
that group Q has in its induced action on Ω exactly 5 orbits.

b) Each quadrangle from �5 has a description inherited from Section 3.2.
A slight modification of this description allows to identify a quadrangle
with a coset of a suitable subgroup of order 4 in group E24 generated
by two elements of the frame X5 (as in Section 3.3), see Section 8 for
more details. Then two quadrangles are in relation R0 ∪ R1 if and only
if they correspond to cosets of the same subgroup. (Equivalence classes
of R0 ∪ R1 will be called direct systems of disjoint quadrangles.)

Proof of (c) and (d) follows from next two propositions.

e) We now explain relation R4 as follows: consider two disjoint 2-element
subsets of X5, construct corresponding subgroups of order 4, get cosets
having (not empty) intersection. An easy exercise for the reader is to
recognize in this description the same relation R4 and to identify it as
wreath product of the Petersen graph with empty graph E4.

6.5 One more model of Q(4, 3)

Let us define an incidence structure S1 on two fibers of master coherent
configuration n.

The points are quadrangles of �5, the lines are skew systems of quad-
rangles in �5, incidence is usual inclusion.
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Proposition 6.5. a) S1 is a partial linear space with 40 lines of size 4 with
point graph Γ3 of valency 12.

b) S1 is a generalized quadrangle of order 3.

c) The structure S⊤
1 dual to S1 allows a spread.

d) S1 is isomorphic to Q(4, 3).

e) Aut(S1) is a rank 3 group of order 51840.

Proof. a) Follows from definitions.

b) We recall that G acts transitively on lines of S1. Let us consider one
of the lines, say l = {(0, 1, 3, 2), (4, 5, 10, 11), (6, 7, 15, 14), (8, 9, 13, 12)}.
We know that Aut(l) = L ∼= GL(2, 3). According to Table 6.1, K
has three orbits on the point set Ω of length 4, 12, 24. First or-
bit clearly corresponds to the points of l. We get representatives
p1 = (0, 1, 5, 4) and p2 = (0, 2, 6, 4) of two other orbits and find
lines l1 = {(0, 1, 5, 4), (2, 3, 12, 13), (6, 7, 15, 14), (8, 9, 11, 10)} and l2 =
{(0, 2, 6, 4), (1, 5, 10, 14), (3, 7, 15, 11), (8, 9, 13, 12)} which intersect l and
contain the points p1 and p2 respectively. Simple counting of flags of
S1 shows that our partial linear space S1 indeed satisfies the remaining
axioms of generalized quadrangles of order 3.

c) Consider 10 direct systems of quadrangles and check that they indeed
provide a spread in the dual structure S⊤

1 .

d) There are exactly two GQ(3) (up to isomorphism) which are dual to
each other, see [Pay75], one of them W (3) allows spreads, while other
one, Q(4, 3) does not have spreads.

e) The automorphism group of both classical generalized quadrangles is
known as group PΓU(4, 2) of order 51840.

6.6 A new partial linear space

It remains to define one more incidence structure S2 = (Ω,S) on the other
fibers of n. Again the points are elements of the set Ω of quadrangles in �5

while lines are edges of �5. Incidence is dual to inclusion, that is edge is in
a quadrangle.

Proposition 6.6. a) S2 is a symmetric incidence structure with 40 points
and 40 lines of size 4.

b) S2 is a partial linear space.

c) For each line l ∈ S there are precisely
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• 12 points p 6∈ l through which there are no lines intersecting l.

• 12 points p 6∈ l through which there is exactly one line intersecting
l.

• 12 points p 6∈ l through which there are exactly two lines intersecting
l.

Proof. The methodology of proof is quite similar to the previous Proposition.
Again due to the transitivity of action of group G on S we select arbitrary
reference edge, say {12, 14}, and observe that stabilizer T of the edge has on
the set Ω orbits of length 4,12,12,12. We select representatives (1, 14, 12, 3),
(0, 2, 3, 1), (0, 4, 5, 1), (0, 15, 14, 1), from each of the orbits and find lines
{(0, 7, 15, 8), (1, 3, 12, 14), (2, 6, 9, 13), (4, 5, 10, 11)}, l,
{(0, 1, 5, 4), (2, 3, 12, 13), (6, 7, 15, 14), (8, 9, 11, 10)},
{(0, 1, 14, 15), (2, 3, 11, 10), (4, 5, 7, 6), (8, 9, 13, 12)},
which intersect the reference line and contain the shown representatives of
orbits of T on Ω respectively. This proves (a), (b) and (c).

Let us consider again basic matrices of the considered scheme m, denoted
as usually by Ai, 0 ≤ i ≤ 4.

Proposition 6.7. The following equation is satisfied for the basic matrices
A0, . . . , A4:

(∗) A2
2 = 12A0 + 2A3 + 4(A1 + A2 + A4)

Proof. The equation immediately follows from the computation of intersec-
tion numbers pi

22 by COCO. Alternative hand computation requires inspec-
tion of 14 paths of length 2 of quadrangles having a common edge (that is,
adjacent in Γ2.) List of such paths is presented in Supplement A.

Proposition 6.8. a) Classical Deza graph is the point graph Γ2 of S2.

b) S2 is uniquely reconstructed from its point graph Γ2.

c) Aut(S2) = Aut(Γ2) = G.

Proof. It follows from Proposition 6.7 that Γ2 is Deza graph. In Propo-
sition 6.5 graph Γ3 was characterized as the point graph of a generalized
quadrangle. These two facts together uniquely determine the classical Deza
graph.

Each edge of �5 corresponds to a clique of size 4 in Γ2. Thus we get at
least 40 such cliques. A simple inspection of data provided in Supplement A
shows that Γ2 has exactly 40 cliques of size 4. This means that S2 may be
recovered from Γ2 and therefore Aut(S2) = Aut(Γ2) is a certain overgroup
of the group G.

We now determine 2-orbits of action of G on the set S of lines in S2.
(The corresponding association scheme will be discussed in Section 11.5.)
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Let us consider edge {0, 1} ∈ S as a reference point. Then the edges {1, 5},
{4, 5}, {13, 15}, {10, 14} correspond to the 2-orbits with valencies 8, 4, 24
and 3 respectively.

It is easy to check that the edge l0 = {0, 1} regarded as line of S2 has
intersection of size 1 with lines l1 = {1, 5} and l2 = {4, 5}, while intersection
with two other lines is empty. Each of three points on line l1 not belonging
to l0 is incident with exactly one point on l0. Similarly, each of three points
on line l2 is incident with zero points on l0.

We now define an auxiliary graph ∆ with vertex set S and edge set
{{0, 1}, {1, 5}}G . Arguments presented above show that Aut(S2) acts faith-
fully on ∆ as a subgroup of Aut(∆). On other hand, it is clear that ∆ is
isomorphic to the line graph of �5. Using classical Whitney-Jung theorem
(see e.g. [Har69]), we get that Aut(∆) ∼= Aut(�5) ∼= G.

We are now bringing together all information about the scheme m and
Deza graph Γ2.

Proposition 6.9. a) Association scheme (Ω, 2 − orb(G,Ω)) represents the
Schurian Higmanian association scheme m.

b) The basic graph Γ3 is the point graph of generalized quadrangle Q(4, 3).

c) The basic graph Γ1 is a spread in the structure dual to Q(4, 3).

d) The basic graph Γ2 is the classical Deza graph.

e) m is Higmanian house for the classical Deza family defined by S2.

f) Graph (Ω,Γ1 ∪ Γ3) is the ridge graph on 40 vertices.

Proof.

7 A family of algebraically isomorphic association

schemes on 40 vertices

A Schurian association scheme m (called Higmanian house for a classical
Deza family) was presented in previous sections from a few different points
of view. We are now interested in classifying all association schemes which
are algebraically isomorphic to m.

7.1 Algorithm and computer search

For the purpose of elaboration of algorithm, let us once more make a glance
on m. Simple computations (with or without use of COCO) show that m

has exactly three non trivial mergings:

< R0, R1, R2 ∪ R3, R4 >,< R0, R1, R2 ∪ R3 ∪ R4 >,< R0, R1 ∪ R2 ∪ R3, R4 > .
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First merging is a wreath product of schemes on 10 and 4 points, second
merging corresponds to graph 10◦K4, the last merging has as a basic graph
strongly regular graph of valency 12. This list of mergings implies that
m = 〈〈R2〉〉, in other words the coherent closure of the classical Deza graph
Γ2 coincides with m. It is important to notice that first and second mergings
are uniquely determined (up to isomorphism) by their intersection numbers.

In this fashion the graph Γ2 can be obtained as follows:

• Consider wreath product W=Petersen wr K4, of the Petersen graph
with K4. This is a regular graph of valency 15;

• Find complement W of W ;

• Remove from the complement W the point graph of Q(4, 3).

Note that the structure of W is quite evident: there are 10 “hypervertices”,
that is complete graphs of size 4 and each “hyperedge” of W is a clique of
size 8, consisting of two hypervertices + all edges joining vertices from one
complete graph and the other. The quotient graph is Petersen graph.

Note also that in search for schemes algebraically isomorphic to m we
may substitute Γ3 by arbitrary strongly regular graph of valency 12 on 40
vertices. All these graphs are known, there are precisely 28 non-isomorphic
such graphs, see [Spe00].

The presented information justifies the following clear outline of an al-
gorithm for the computer search of all association schemes algebraically
isomorphic to m:

• For each strongly regular graph Γ in catalog [Spe00] consider its com-
plement Γ of valency 27.

• Disregard Γ if it does not contain cliques of size 8. Otherwise describe
all orbits of cliques of size 8 in Γ.

• Use detected cliques as possible hyperedges in W=Petersen wr K4.
Classify all different (up to automorphisms from Aut(Γ)) possible em-
beddings of W into Γ.

• Consider difference Γ \W which is a regular graph of valency 12 (can-
didate to be an analogue of the classical Deza graph). Check that
Γ \ W is Deza graph with Deza children Γ and Γ.

• For each detected Deza graph Γ \ W find coherent closure. Disregard
results if it has rank larger than 5.

• In case when coherent closure has rank 5 check whether it is alge-
braically isomorphic to the Higmanian scheme m.
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Γi Mi |Aut(Γ)| |orb(Aut(Γ))| |Aut(M)| |orb(Aut(M))| Geom. 4-cliques

Γ1 1.1 48 4, 123 48 same no 32
Γ2 2.1 384 16, 24 384 same no 8
Γ2 2.2 384 16, 24 192 same yes 40

Γ3 3.1 8 28, 42, 82 8 same no 20

Γ4 4.1 12 1, 33, 63, 12 12 same no 24

Γ5 5.1 64 8, 162 64 same yes 40

Γ5 5.2 64 8, 162 32 42, 82, 16 no 24
Γ6 6.1 51840 40 1920 same yes 40
Γ7 7.1 192 4, 12, 24 192 same no 24

Γ7 7.2 192 4, 12, 24 32 42, 82, 16 yes 40

Γ8 8.1 8 28, 42, 82 8 same no 28

Γ9 9.1 48 2, 4, 6, 12, 16 16 24, 44, 16 no 32

Γ10 10.1 16 42, 84 16 same no 32

Γ10 10.2 16 42, 84 8 48, 8 no 32
Γ11 11.1 144 4, 12, 24 48 same no 32

Table 7.1: Higmanian schemes

This algorithm was implemented in GAP with the aid of GRAPE and nauty.
In what follows we are using labeling of strongly regular graphs as in

[Spe00]. It turns out that precisely first 11 graphs have cliques of size 8.
All these graphs admit at least one Higmanian association scheme, that is
scheme algebraically isomorphic to m. Altogether we get 15 schemes, the
corresponding Deza graph in each scheme may be called Higmanian (Deza)
graph because it completely defines the considered Higmanian scheme.

Of course, of a special interest are those Higmanian graphs which are also
geometric, that is point graphs of a partial linear space which is an analogue
of structure S2 described in previous section. A necessary condition for this
property is that a Higmanian graph contains at least 40 cliques of size 4.

The main results of computation are presented in Table 7.1. Here we
show for each graph order of its automorphism group and lengths of its
orbits on vertices. Similar information is provided for automorphism group
of each association scheme.

Note that now the classical (Schurian) Higmanian association scheme m

coincides with the scheme m6.1.
We provide also information about the amount of 4-cliques in each of 15

Higmanian graphs.
All 14 schemes besides the classical one are non-Schurian. An interesting

correlation appears with the property to be geometric. Only those (4) Hig-
manian graphs are the point graphs of a suitable partial linear space which
admit (like classical Higmanian graph) precisely 40 cliques of size 4.

All detected partial linear spaces have the same intersection property
like the structure S2.

Analysis of computational results shows that each time when we get
a color graph containing a Deza graph, this graph defines an association
scheme. In other words, the last steps of algorithm dealing with coherent
closure seem to be redundant. This empirical observation is justified below.

Proposition 7.1. Let Γ = Γ3 = (Ω, R3) be a strongly regular graph of
valency 12, the complement of which allows an embedding of W . Let Γ1 =
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10◦K4 be a disconnected graph induced by hypervertices of W . Assume that
there exists α such that for each edge (x, y) ∈ R3, |Γ3(x)∩Γ1(y)| = α. Then:

a) Color graph (Ω, R0, R1, R2, R3, R4) where Γ1 = (Ω, R1), W = (Ω, R1 ∪
R4), is an association scheme;

b) The association scheme in (a) is algebraically isomorphic to m.

Proof. Using Proposition 6.2 together with our assumption, we get a proof
of (a). Indeed, W corresponds to existence of a wreath decomposable initial
association scheme. To prove (b) we mention that obtained scheme is proper
class II scheme. According to parametrization of Higman, there is only one
possibility (up to algebraic isomorphism), which corresponds to case a1 of
Proposition 5.1.

Remark. In fact, for all 15 schemes, α = 1. Though in this case
the possible modification of algorithm was not implemented in advance, in
general, such improvement may be quite essential, allowing to make a more
rigid inspection of candidates for embedding.

Two of detected Higmanian association schemes, namely m2,1 and m2,2

have reasonably large automorphism groups. This makes it possible to
present for both schemes a computer free explanation. First, let us con-
sider the strongly regular graph common for both schemes.

We consider again group P = Aut(Q4) as it was presented in Section
3.2. It is easy to observe that P has two orbits of length 24 and 16 on the set
Ω of all quadrangles in �5. First orbit, Ω1, corresponds to all quadrangles
inside of Q4, while second orbit, Ω2, involves those quadrangles in �5 which
have just two parallel edges in Q4. Action of P on Ω1∪Ω2 defines a coherent
configuration with two fibers.

Proposition 7.2. Let X2,1 = (Ω, 2− orb(P,Ω)) be a coherent configuration
defined by the action of P = Aut(Q4) on Ω. Then

a) X2,1 has two fibers Ω1 and Ω2 of length 24 and 16 corresponding to orbits
of (P,Ω).

b) Rank of X2,1 is equal to 16.

c) Representatives of basic relations of X2,1 are presented in Table 7.2.

d) Mergings of relations 7,10,15,4 and 8,11,15,4 correspond to strongly reg-
ular graph of valency 12 with the automorphism groups P and G of order
384 and 51840 respectively.

e) X2,1 allows two rank 5 association scheme m6.1 and m = m2.1 which
appear from the mergings
(0, 12)(14, 5, 2)(13, 7, 10, 1)(8, 11, 15, 4)(6, 9, 3)
and (0, 12)(14, 5, 2)(8, 11, 13, 1)(7, 10, 15, 4)(6, 9, 3).
Here each bracket represents relation in each Higmanian scheme.
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f) CAut(X2,1) = Aut(X2,1) = (P,Ω).

g) AAut(X2,1) has order 2 and is represented by permutation t =
(7, 8)(10, 11) in action on the relations of X2,1.

h) Rank 3 schemes generated by strongly regular graphs, m2.1 and m are
algebraic twins with respect to AAut(X2,1)

Proof. To prove (a) we have to consider just quadrangles which do not be-
long to Ω1. It is evident that P acts transitively on the 32 edges of Q4 as
well as on 16 pairs of antipodal edges. Consider as a representative pair
{{3, 11}, {4, 12}} of antipodal edges. This pair together with two edges
{{4, 11}, {3, 12}} from the direct 1-factor Cay(E24 , {1111}) forms a quad-
rangle of �5. Orbit of this quadrangle with respect to (P,Ω) has length
16 and forms fiber Ω2. The results in (b)-(e) are obtained with the aid of
COCO, while COCO-II was used to get (f)-(h).

We explain structure of relations moved by permutation t.
Relations 7 and 8 are between elements of Ω1 and Ω2, both have out-

valency (in Ω1) equal to 4 and in-valency (in Ω2) equal to 6. Relation 10 is
paired with 7, relation 11 with 8. It is enough to distinguish between the
relations 7 and 8.

Let A ∈ Ω1 be a quadrangle in Q4, say A = (9, 11, 15, 13). It appears
in four systems of skew quadrangles. Let us take arbitrary one. It has one
more quadrangle belonging to the same copy of Q4, say B = (0, 1, 5, 4).
They define partition of Q4 into two disjoint Q3. The corresponding skew 1-
factor contains exactly two edges which do not touch vertices of A and B, in
our case these are {7, 8} and {3, 12}. These edges form a unique quadrangle
C in the considered skew system which is associated to A in relation 7, here
C = (3, 7, 8, 12).

Description of relation 8 is more simple. Consider again quadrangle A
as a reference one. Select in it arbitrary edge, say {9, 13}. Get the antipodal
edge {2, 6}. They together define unique quadrangle D = (2, 6, 9, 13) which
is associated to A.

Now the strongly regular graph #2 with group (P,Ω) is obtained from
the classical geometrical strongly regular graph #6 by simple switching:
remove relations #7 and #10 and instead add relations #8 and #11. Quite
routine arguments provide a proof that such switching leads to a strongly
regular graph, though computer is better suited for a necessary inspection.

Group P = Aut(Q4) has three subgroups of index 2. We are inter-
ested in one of them, denoted by U , which is isomorphic to E23 ⋊ S4.
Recall that Q4 is a bipartite graph with a bipartite partition of vertices
{{0, 3, 5, 6, 9, 10, 12, 15}, {1, 2, 4, 7, 8, 11, 13, 14}}. Group U is defined as the
stabilizer of one class of this partition. As group acting on vertices of �5,
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# Fibres Valency
in Ω1

Valency
in Ω2

Representative

0 1 (0,0)
1 8 (0,1)
2 2 (0,25)
3 Ω1 4 (0,7)
4 8 (0,27)
5 1 (0,39)

6 8 (0,8)
7 Ω1,Ω2 4 (0,3)
8 4 (0,26)

9 12 (3,4)
10 Ω2,Ω1 6 (3,0)
11 6 (3,16)

12 1 (3,3)
13 6 (3,6)
14 Ω2 3 (3,18)
15 6 (3,19)

Table 7.2: Description of basic relations of X2,1

U has two orbits of length 8, namely those sets forming the partition. We
consider induced action of U on the same set Ω of quadrangles in �5.

Proposition 7.3. Let X2,2 = (Ω, 2 − orb(U,Ω)).

a) X2,2 is a coherent configuration of rank 20 with the same fibers Ω1, Ω2

as in Proposition 7.2.

b) Aut(X2,2) = U , CAut(X2,2) is a group of order 1152,
CAut(X2,2)/Aut(X2,2) ∼= S3.

c) AAut(X2,2) ∼= S4, therefore X2,2 has proper algebraic automorphisms.

d) Among algebraic mergings of X2,2 there are two non-Schurian coherent
configurations with fibers Ω1, Ω2 of rank 16 and 12 with the automorphism
groups U and P respectively.

e) X2,2 has 31 non-trivial merging association schemes, 12 of them are rank
5 Higmanian association schemes of type a1. 6 of these schemes are
isomorphic to m2.2, 3 of them to m2.1, and 3 to m6.1 = m.

f) All above 12 schemes form one orbit under AAut(X2,2).

Proof. The results were obtained with the aid of COCO and COCO-II. We
intend to present a computer free explanation of interesting parts of the
results in a subsequent publication.
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Coherent configuration X2,2 is clearly a splitting of X2,1. While increasing
of the rank (from 16 to 20) is not so essential, corresponding algebraic group
is becoming much more rich.

In next two sections we will go on in a sense to the very end, splitting
our classical rank 5 scheme to a coherent configuration of high rank. This
will imply an explosion of the size of the algebraic automorphism group.
Paradoxically, we will be able to reflect more transparent understanding of
resulted huge objects in comparison with currently available vision of X2,2.

8 WFDF coherent configurations

In this section we will describe a general class of coherent configurations with
many fibers, which were recently introduced by the author M.M., following
ideas of Wallis and Fon-Der-Flaas. A specific example of such configurations
will be investigated in the next section.

8.1 Initial notions

We briefly introduce two main ingredients of our future general construc-
tions.

As first (internal) ingredient we will consider complete affine amorphic
association scheme (as it was introduced in [GolIK85]). Recall that each such
association scheme has n2 vertices, n+1 classes and bijectively corresponds
to an affine plane of order n. Namely, vertices of scheme correspond to the
points of an affine plane. Each parallel class of affine lines is associated with
a class of scheme, which is the edge set of a disconnected graph isomorphic
to n ◦ Kn (disjoint union of n copies of complete graph of order n).

Conversely, any partition of edges of complete graph Kn2 into n + 1
copies of graphs of form n ◦Kn clearly depicts an affine plane of order n or
alternatively a complete affine association scheme on n2 vertices.

1 2

3 4

1 2

3 4

1 2

3 4
Figure 8.1: Parallel classes

Example 8.1. Figure 8.1 depicts 3 parallel classes of affine plane of order
2.

A partial linear space is an incidence structure S = (P,B) such that any
two distinct points are incident to at most one block, and all blocks (also
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called lines) have size of at least 2. In a uniform partial linear space all lines
have the same size. Uniform partial linear spaces will play a role of second
(external) ingredient in our coming definitions.

Example 8.2. a) A regular graph of valency k with n vertices introduces
a degenerate partial linear space. Here each block is represented by an
edge.

b) S(2, k, v), that is a Steiner system whose blocks have size k is a very
significant example of a partial linear space, which is a linear space (that
is, any two distinct points appear in exactly one block.)

Example 8.3. We consider the complement of the Petersen graph (see Fig-
ure 4.4) as it was depicted in Figure 4.1, that is the triangular graph T (5).
This graph is geometrical. Indeed, let us consider its maximal (with respect
to inclusion) cliques of the form {{i, j}, {i, k}, {j, k}}, where {i, j, k} ⊆ [1, 5]
is a subset of size 3. Clearly, all 10 cliques of such form represent blocks of
a uniform partial linear space with 10 points coinciding with the vertices of
T (5).

We are now in a position to define WFDF coherent configurations as
a kind of a “blow up” of an external structure, namely of a partial linear
space. Each point of the space will be substituted by a copy of an affine
plane of order n. The points of such affine planes will form the fibers of the
resulting configuration.

8.2 Main definitions

Definition 8.1. Let Oi = (Vi, {Ci,1, . . . , Ci,n+1}) be a copy of affine plane
of order n. Here, |Vi| = n2, for 1 ≤ j ≤ n+1. Ci,j is a graph of form n◦Kn,
which usually will be regarded as a parallel class #j . We will assume that
a certain labeling of parallel classes of Oi is prescribed. We need m copies
of planes Oi which are labeled by elements from [1,m]. Let S be a partial
linear space of order m (that is with m points), assume that each point of
S is incident with at most n + 1 lines of S.

Let us consider as a new vertex set the set V = V1 ∪ V2 ∪ · · · ∪ Vm, here
we assume that vertex sets Vi, 1 ≤ i ≤ m are pairwise disjoint. Sometimes
it is convenient to consider V as Cartesian product V = [1, n2]× [1,m], then
each set Vi is attributed to [1, n2] × {i}.

We now define an arc partition of the complete graph Kn2·m with the
vertex set V , that is a complete color graph with n2 · m vertices.

Each set Vi is playing a role of a fiber in a coming coherent configuration.
Inside of this fiber we naturally get n + 2 colors, that is relations Ci,j, 1 ≤
j ≤ n + 1, and also the identity relation ∆i on Vi.

Now we have to define relations between different fibers.
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Let us first consider the Levi (incidence) graph L(S) of partial linear
space S = ([1,m],H). For each point i ∈ [1,m] we label all blocks from H
incident to i by distinct elements of [1, n + 1] (this is always possible due to
our assumption on S.) A used labeling will be denoted by fi.

Now we take an arbitrary block (hyperedge) h ∈ H. Let i, j ∈ [1,m]
be incident to h. Assume that fi assigns si to (i, h), while fj assigns sj

to (j, h). Then we take class Csi
from fiber Vi and class Csj

from fiber
Vj. Recall that each such class can be regarded as a partition of [1, n2] into
n subsets of cardinality n. We now consider bijection σij between the two
partitions associated to the classes Csi

and Csj
(a question about possible

restrictions for such bijections will be discussed below).
Note that a bijection σij completely defines σji, and vice versa.
With the aid of σij we define a directed regular bipartite graph Rij of

valency n: each vertex from class x of a partition Csi
is joined by an arc

with each vertex from class xσij in partition Csj
. We also define Rij as a

complement to Rij, that is Rij = (Vi × Vj) r Rij .
Note that if i, j are not joined by a suitable hyperedge from H then Rij

is empty, that is between the fibers Vi and Vj we get just one relation Rij =
Vi × Vj .

It remains to describe additional requirements to the bijections σij. This
depends on cardinality of h ∈ H. If |h| = 2 there is no extra requirements.
Otherwise let |h| ≥ 3, and i, j, k ∈ h. Then we claim that

(∗) σij · σjk = σik.

(Practically restriction (∗) means that we may select arbitrary bijections
from a certain element i ∈ h to all other j ∈ h. After that the remaining
bijections are uniquely determined by (∗).)

Proposition 8.1. a) The resulted complete colored graph m = (V,R) is
defined correctly and has n2 · m vertices.

b) Assume that each point of S is collinear with k other points. Then the
graph m has m(n + m + k + 1) colors, m of them are reflexive.

Proof. Correctness follows from the property of a partial linear space: any
two points are joined by at most one line. Clearly we have m(n + 2) colors
inside of the fibers, m of them are reflexive, and 2mk + m(m− 1− k) colors
between the fibers.

Note that we have a lot of “degrees of freedom” in our definition: Selec-
tion of functions fi and σij. Also in principle, it is not necessary that the
affine planes, attributed to distinct fibers, should be isomorphic.

Proposition 8.2. Color graph C = (V,R) defines a coherent configuration.
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Proof. Let W be a vector space spanned by the adjacency matrices of all
relations from R. Fulfillment of all axioms of a coherent algebra, besides
one is quite evident. Thus the only non-trivial part of a job is to check that
product of any two basic matrices belongs to W . We consider a few different
cases:

a) Both relations are from the same fiber: Use Lemma 3.2 from [GolIK85].

b) Both relations are between the same two distinct fibers i, j: Use proper-
ties of imprimitive strongly regular graph.

c) First relation is between fibers i and j, second relation is between fibers
j, k where i, j, k are pairwise distinct.

1) i, j, k are not collinear. Then A(Rij)A(Rjk) = Jik.

2) i, j, k are collinear. Then A(Rij)A(Rjk) = nA(Rik).

d) First relation is between fibers i and j, second relation is between fibers
k and l, i, j, k, l are pairwise disjoint. In this case the product of two
adjacency matrices is clearly equal to zero matrix, thus belonging to W .

8.3 Generalizations and particular cases

The author M.M. was using in [Muz], see also [KliMPWZ07] a term half-
homogeneous coherent configuration for a more general case in comparison
with the one defined in previous subsection. In what follows we will use the
term WFDF configuration for these objects.

A WFDF configuration which is defined with the aid of an affine plane of
order n and projective plane of order n will be called a WFDF configuration
of type AP (n). A detailed investigation of various properties of the unique
configuration AP (2) is presented in [KliMPWZ07].

A WFDF configuration which is defined with the aid of an affine plane
of order n and complete graph Kn+2 (regarded as linear space with blocks
of size 2) will be called a WFDF configuration of type AK(n). Investigation
of the unique AK(2) was announced in [KliMR05].

Note that the construction suggested in [Muz] is of a more general nature:
in a role of incidence structure, instead of an affine plane, an arbitrary affine
resolvable 2-design (in sense of [Fla02]) may be considered.

In what follows we will restrict our attention by a consideration of a
very particular WFDF configuration on 40 points for which affine plane of
order 2 serves as internal structure and a partial linear space arising from
the graph T (5), see Example 8.3, is the external structure.

Note that though in most interesting for us examples of WFDF config-
urations we were using uniform external structure, this requirement to a
partial linear space is not necessary in the given definition.
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9 WFDF configuration on 40 vertices and some of

its mergings

Basing on our recent experience of consideration of WFDF configurations
with 16 and 28 vertices, we started to speculate that some of the Higmanian
association schemes on 40 points presented in Section 7 may be obtained in
a unified manner from a suitable WFDF configuration on 40 points. To con-
firm such guess we started from the classical Higmanian association scheme
m on 40 points, colored the 10 cells of the parabolic relation E with 10 dis-
tinct colors and constructed coherent closure of the resulted colored graph.
As a result we obtained a rank 190 coherent algebra W with 10 fibers, which
turns out to be Schurian. Using some experimental programs from COCO-II
we described groups Aut(W ), CAut(W ), CAut(W )/Aut(W ) and AAut(W ).
Afterwards we have managed to get a computer free interpretation of a ma-
jor part of our discoveries. They are presented below.

Model of W. We start with group H = E24 which we regard as vector
space in dimension 4 over GF (2). Let {e1, e2, e3, e4} be the standard basis
of H, consider the set X5 = {e1, e2, e3, e4, e1 + e2 + e3 + e4}, which will be
called a frame in H. Clearly, 5 vectors of this frame are linearly dependent,
while any 4 of them are independent. Now we consider any two distinct
vectors from frame, generate a subgroup of order 4, and construct all cosets
of such subgroup in H. In such manner we get a set Ω which consists of 40
cosets. Group H acts faithfully on Ω by shifts. The proof of the following
proposition is straightforward.

Proposition 9.1. Let W ′ = (Ω, 2 − orb(H,Ω)).

a) W ′ is a rank 190 Schurian coherent configuration with 10 fibers of size
4. Each fiber corresponds to 4 cosets of the same subgroup.

b) Association scheme induced by each fiber is isomorphic to complete affine
scheme of order 2 as it is presented in Example 8.1.

c) Let Ωi and Ωj be two fibers generated by disjoint 2-element subsets of
X5. Then all arcs starting in Ωi and ending in Ωj form one relation
from 2 − orb(H,Ω).

d) Let Ωi and Ωj be two fibers generated by 2-element subsets having in-
tersection of cardinality one. Then 2 − orb(H,Ω) contains exactly two
relations formed by arcs starting in Ωi and ending in Ωj.

e) W ′ ∼= W and forms a WFDF coherent configuration with internal struc-
ture isomorphic to affine plane of order 2 and external structure isomor-
phic to one presented in Example 8.3.

Proof. As a control sum the reader may count 10 · 4 + 30 · 1 + 60 · 2 = 190
relations of kind (b), (c), (d).
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In what follows we will identify coherent configurations W and W ′.
First we wish to describe the 2-closure of (H,Ω). For an arbitrary permu-

tation group (G,Ω) we consider (as was suggested in [KalK76]) an invariant
f = f(G,Ω) of (G,Ω) which is called the degree of freedom of (G,Ω). Here
by definition f is the smallest amount of elements from Ω such that their
pointwise stabilizer in G is the identity group.

Proposition 9.2. Group (H,Ω) is 2-closed. In other words, Aut(W ) = H.

Proof. According to definition of W , Aut(W ) consists of all the automor-
phisms of m which preseve each of the cells of the parabolic relation 10 ◦K4

in m. Recall that Aut(m) coincides with the group G of order 1920. Group
H is a normal subgroup of group G and it is maximal normal 2-subgroup of
G (acting intransitively on Ω). Thus H = Aut(W ).

Lemma 9.3. Let (G,Ω) be intransitive permutation group with orbits
Ω1, . . . ,Ωk. Assume that G does not act faithfully on any of orbits Ωi.
Then the centralizer K = CSym(Ω)(G) coincides with the direct sum of the
centralizers CSym(Ωi)(G,Ωi) of each separate action.

Proof. Clearly for each 1 ≤ i ≤ k we get CSym(Ωi)(G,Ωi) ≤ K. Therefore
also the direct sum CSym(Ω1)(G,Ω1) ⊕ · · · ⊕ CSym(Ωk)(G,Ωk) is a subgroup
of K. Assume that K contains more permutations besides this direct sum.
Then at least two orbits of group G are merged to an orbit Ω′ of group
K. Get contradiction with Proposition 4.3 from [Wie64] which implies that
action (G,Ω′) is semiregular.

Proposition 9.4. The centralizer CSym(Ω)(H) of (H,Ω) is an elementary
Abelian group of order 220.

Proof. The action of group H on each of its 10 orbits is not faithful and
coincides with regular group E4. The centralizer of each single regular group
E4 coincides with itself. Now use Lemma 9.3.

Proposition 9.5. a) CAut(W ) = NSymΩ)(H).

b) CAut(W ) ∼=
(

S5,
{[1,5]

2

}

)

≀(E4, E4) ∼= E220 ⋊S5, a group of order 223 ·3·5.

Proof. a) For arbitrary Schurian coherent configuration its color group co-
incides with the normalizer of the automorphism group in corresponding
symmetric group. Now use Proposition 9.2.

b) By simple properties of wreath product, the group
(

S5,
{[1,5]

2

}

)

≀ (E4, E4)

is a semidirect product of E220 with S5, therefore S5 normalizes E220 ,
which in turn coincides with group CSymΩ)(H). Due to Proposition
9.1(e), the group CAut(W ) acts on the fibers as a subgroup of the au-
tomorphism group of the point graph of the external structure which is
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known to be isomorphic to T (5). Because
(

S5,
{[1,5]

2

}

)

= Aut(T (5)), we

get that CAut(W ) ∼= E220 ⋊ L, where L ≤ S5. Now straightforward
analysis of the structure of W = W ′ confirms that L = S5.

Corollary 9.6. CAut(W )/Aut(W ) is a group of order 219 · 3 · 5.

Proposition 9.7. a) As an abstract group AAut(W ) is isomorphic to the
same group E220 ⋊ S5;

b) CAut(W )/Aut(W ) is a non-normal subgroup of index 16 in AAut(W ).

Proof. Both parts were confirmed using computer package COCO-II and
GAP. Here we provide a brief outline of a possible computer free proof.

First we need to count structure constants of W . For this purpose it is
enough to distinguish two main cases: 3 fibers correspond to a line of the
external structure, or correspond to a non-collinear triple of the points of
the external structure.

Let {i, j, k} be a line of the external structure, Ωi,Ωj ,Ωk are corre-
sponding fibers. Then, from one of these fibers (say, Ωi) to any other
(say, Ωj) there are two directed relations in W . Assume τij is a permu-
tation (on relations of W ) which permutes these two relations as well as
the opposite pair of relations. Then the group 〈τij, τik, τjk〉 is elementary
Abelian group of order 8. Denote by Hi,j,k subgroup of index 2, namely
Hi,j,k = 〈τijτik, τijτjk, τikτjk〉.

Check, using knowledge of the structure constants, that all permutations
in Hi,j,k are algebraic automorphisms. Now, using similar subgroups of
AAut(W ) for each of the 10 lines of external structure, we show that a
subgroup of order 220, isomorphic to (E22)10 = E220 preserves all fibers and
is a subgroup of AAut(W ).

Again, using the knowledge of the structure constants we get that no
permutation of the form τij is in AAut(W ). Thus we may justify that E220

is the whole kernel of action of AAut(W ). We already know from Corollary
9.6 that the action of AAut(W ) is at least S5. Clearly, it can not be larger
because, by our definitions this action has to preserve the external structure.

To prove (b) it is enough to check that a permutation τijτik does not
normalize CAut(W )/Aut(W ).

Remarks.

1. In what follows we will call permutations of the form τijτik elementary
algebraic automorphisms of W . Because these permutations do not
belong to CAut(W )/Aut(W ) they are proper algebraic automorphisms,
that is those which are not induced by a suitable permutation from
CAut(W ) acting on points of W .
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2. It follows from our description of AAut(W ) that this group acts faith-
fully and transitively on the 120 relations between two fibers corre-
sponding to adjacent ordered pairs of vertices of graph T (5). On two
other sets of 2-orbits of size 40 and 30 group E220 acts trivially, thus
the action of AAut(W ) coincides with S5. Moreover, to describe ac-
tion of AAut(W ) it is enough to consider instead of set of “ordered”
relations of size 120, the set of “non-ordered” relations of size 60.

3. In what follows we need to represent some computer data related to
W and AAut(W ). Because we identify W and W ′ it is convenient to
use description of points of W in terms of classical scheme m which in
turn (see Section 6) is inherited from the Clebsch graph in canonical
representation.

Coding of W . We consider the normal subgroup E24 of the Aut(�5)
of order 16 in its action on the vertices of the �5 as follows:

E24 =

〈

(0, 1)(2, 3)(4, 5)(6, 7)(8, 9)(10, 11)(12, 13)(14, 15)
(0, 2)(1, 3)(4, 6)(5, 7)(8, 10)(9, 11)(12, 14)(13, 15)
(0, 4)(1, 5)(2, 6)(3, 7)(8, 12)(9, 13)(10, 14)(11, 15)
(0, 8)(1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)

〉

We consider the computer generated list of all quadrangles of �5 as vertices
of m and W (see Supplement A), denoted by Ω.

We get list of all elements generating E24 in the action on Ω.
Using COCO we obtain list of representatives of all 190 basic relations

from W (see Supplement B). Using COCO-II, we get list of generators of
CAut(W ) as permutations on Ω and induced permutations on the set R of
relations of W . Finally we get list of generators of the group (AAut(W ), R).
This data is used in the course of computer proof of the next Proposition.

G = Aut(�5) in action on 40 squares, is a subgroup, of CAut(W ), its
action on 190 colors of W coincides with a group, S, of order 120, isomorphic
to S5, considered as a subgroup of AAut(W ).

Proposition 9.8. a) Group A = AAut(W ) has 220 subgroups conjugate to
S in A.

b) These groups split into three conjugacy classes with respect to the action
of subgroup Q = CAut(W )/Aut(W ) by conjugation on subgroups of A,
the cardinalities of these classes are 65536, 655360, 327680.

c) Representatives of these conjugacy classes lead to 3 association schemes
which are algebraically isomorphic to m but are not combinatorially iso-
morphic. The schemes are 2.1, 6.1, 7.1 according to enumeration in
Section 7.
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d) In fact, these three schemes are algebraic twins, namely two non-Schurian
schemes are obtained from the classical Schurian one with the aid of
action of suitable algebraic automorphisms from A.

Proof. In our eyes, this proposition provides a nice example of a mathemati-
cal claim justified strictly with the aid of a computer. All corresponding data
is provided in Supplement B. Using this data, the reader may in principle,
arrange an independent computer verification of our results. Three repre-
sentatives for the mergings which give schemes isomorphic to 6.1, 2.1 and
7.1 are listed in Supplement B, as well as algebraic automorphisms mapping
scheme 6.1 to 2.1 and 7.1.

Remark. We checked that the automorphism groups of the remaining
12 Higmanian schemes from the family described in Section 7 do not contain
subgroup H = E24 and thus these schemes can not appear as algebraic
mergings of any subalgebra of the coherent algebra W . Thus in a sense the
above 3 schemes should be regarded as exceptional ones.

10 Coherent closure of cage on 40 vertices

10.1 Computer aided results

In what follows we consider the same copy of the graph R as it was depicted
in Section 3.6. Denote for this section G = Aut(R).

Using GAP we obtain that G is group of order 480.
Using the set of generators of G as input to COCO, we get that G in

action on the vertex set Ω of R is a transitive group of rank 7 with the
subdegrees 1, 2, 1, 12, 6, 12, 6 and representatives of 2-orbits (0, 0), (0, 1),
(0, 2), (0, 4), (0, 8), (0, 9) and (0, 10) respectively.

COCO returns 7 non-trivial merging schemes of the symmetric asso-
ciation scheme X = (Ω, 2 − orb(G,Ω)), among them the scheme ma2 =
(Ω, {R0, R1 ∪ R2, R3, R4, R5 ∪ R6}). Analysis of all the merging schemes of
X shows that ma2 = 〈〈Γ4〉〉, that is the coherent closure of the graph Γ4

coincides with ma2. COCO shows that Aut(ma2) = G, thus ma2 is a non-
Schurian association scheme. Because {0, 8} is an edge of R, we understand
that R = Γ4. Finally, analyzing intersection numbers of ma2 calculated with
the aid of COCO, we conclude that ma2 is a proper class II Higmanian as-
sociation scheme which represents case a2 in formulation of Proposition 5.2
(here τ = 6).

Using GAP once more, we conclude that G = (SL(2, 5) : Z2) : Z2.
Computations with GAP show that G has three subgroups of index 2, all of
structure SL(2, 5) : Z2, which will be denoted by K, L, M ; N = SL(2, 5)
is the unique subgroup of order 120 in G. We also determine the lattice of
conjugacy classes of G consisting of 76 classes.

56



We now wish to interpret (as much as it is possible) the obtained results
without essential use of a computer. We will use the fact that R is cage on
40 vertices which is unique up to isomorphism.

10.2 A few subgroups of G

Proposition 10.1. a) Group G has an imprimitivity system S consisting
of 10 blocks of size 4. Each block of system induces an empty subgraph
of size 4. There is only one such system in G.

b) Stabilizer of all blocks of system S in G is a cyclic group Z4 acting
semiregularily on the vertex set Ω.

c) The quotient graph R/S of the graph R with respect to S is the comple-
ment P of the Petersen graph.

d) |Aut(R)| ≤ 480.

Proof. This proposition is a summary of correct results inherited from
[Ans81]. System S is formed by blocks of order 4 forming the matrix given
by Anstee. A group < g5

1 > is a cyclic group Z4 which stabilizes each block
of the system S. Arguments provided in p. 19 of [Ans81] justify that Z4

is the full stabilizer of the blocks of S. Uniqueness of S is also claimed in
[Ans81]. Thus Aut(R) ∼= Z4.Y , where Y is a suitable subgroup of S5.

Now we first wish to provide a computer free proof of the fact that
Aut(R) acts transitively on Ω. Recall that we already are aware of a sub-
group H ≤ Aut(R), H ∼= Z4 × D5 =< g1, g2 > as in Section 3.6.

Proposition 10.2. a) There exists a subgroup Q ≤ Aut(R) of order 80
which acts transitively on Ω.

b) Q ∼= Z4.AGL(1, 5).

c) Q contains a regular subgroup R.

Proof. Let us consider the following partition
τ = {{P0, P1, P2, P3}, {Q0, Q1, Q2, Q3}} of the Robertson decomposition of
R (according to the labels of cycles presented in Section 3.6). Group H acts
on the 8 cycles of this decomposition as E4, preserving each of two cells of
the decomposition and having two orbits of size 20 in the action on the set
Ω.

Let us now consider subset A ⊆ Ω, where A is the union of first and fifth
cell in Anstee decomposition, namely A = {0, 1, 2, 3, 20, 21, 22, 23}. Think-
ing in terms of the quotient graph with respect to the Anstee decomposition,
the set A represents one of the edges of the quotient Petersen graph, thus
the setwise stabilizer of A in G should have index 15. (In fact, this is true
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and the whole stablizer is Sylow 2-subgroup of order 32 which is isomorphic
to (Z2 × D4) : Z2.)

We however need just one permutation g3 from this stabilizer, where g3 =
(0, 20, 3, 21, 2, 22, 1, 23)(4, 28, 19, 33, 6, 30, 17, 35)(5, 31, 16, 32, 7, 29, 18, 34)
(8, 36, 15, 25, 10, 38, 13, 27)(9, 39, 12, 24, 11, 37, 14, 26). It is easy to check
that indeed g3 ∈ G.

Let us now consider group 〈g1, g2, g3〉. Easy inspection shows that g3

normalizes 〈g1, g2〉 and transposes two orbits of 〈g1, g2〉 on Ω. Therefore
group Q = 〈g1, g2, g3〉 has order 80 and acts transitively on the set Ω.

Simple geometrical or group theoretical arguments show that G ∼= Z4.Y ,
where Y ∼= AGL(1, 5).

Now we define R ∼= 〈g4
1 , g3〉. It is evident that R is a transitive group

and is a proper subgroup of Q. Thus R is a required regular subgroup of
order 40.

10.3 Coherent closure of the graph R

An intersection diagram of graph R presented in Figure 10.1, was con-
structed as follows:

• Fix vertex 0.

• Consider set N(0) = N1(0) of the neighbors of 0.

• Consider sets N2(0) and N3(0) of the vertices at distance 2 and 3 from
0.

• Split set N2(0) into two sets N2,1(0) and N2,2(0), where N2,2(0) con-
tains those and only those vertices from N2(0) which have a neighbor
in N3(0).

• Check that the obtained partition is equitable.

The sets in the partition are as follows: N0(0) = {0},
N1(0) = {8, 12, 25, 28, 34, 39},
N2,1(0) = {4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23},
N2,2(0) = {9, 10, 11, 13, 14, 15, 24, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38},
N3(0) = {1, 2, 3}

Proposition 10.3. a) Coherent closure 〈〈R〉〉 of graph R is an association
scheme with 4 classes and valencies 1, 6, 12, 18, 3.

b) This association scheme is proper class II Higmanian rank 5 scheme
which belongs to type a2.

Proof. a) We use Lemma 2.1 in conjunction with Proposition 10.2 and above
observation about the intersection diagram of R. We already know that
Aut(R) is transitive, thus 〈〈R〉〉 is an association scheme.
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N2,2(0) N3(0)

Figure 10.1: Intersection diagram of graph R

b) Note that graph R is connected of diameter 3. Simple inspection of
valencies shows that the distance 3 graph of R provides, together with
reflexive relation the only parabolic in 〈〈R〉〉. Note also that the quotient
graph of R is P .

We use notation ma2 for the Higmanian association scheme 〈〈R〉〉 with
valencies 1, 3, 6, 18, 12 (according to the ordering used in Proposition 5.2).
To the best of our knowledge this is first example of scheme of type a2.

Theorem 10.4. Let m′ be an association scheme algebraically isomorphic
to ma2. Then m′ is combinatorially isomorphic to ma2. (In other words,
ma2 is uniquely determined up to isomorphism by its tensor of intersection
numbers.)

Proof. Denote by A0 = I,A1, A2 = S,A3, A4 basic matrices of scheme m′.
We use the same labeling of matrices as in Proposition 5.2. S is the Anstee
notation for adjacency matrix of Anstee graph.

According to the formal definition of the Anstee graph we get

A2
2 = 6I + A3 + A4.

The same formula for the graph R and the same interpretation of the Anstee
graph is visible from Figure 10.1 (remember that here A2 represents the
adjacency matrix of R). Let us now consider the basic graph R′ defined by
the matrix A′

2. Clearly this is a connected regular graph of valency 6. Let
us construct for R′ the intersection diagram in the same way as it was done
for R. Algebraic isomorphism of ma2 and m′ sends R to R′, therefore for
R′ we will get the same intersection diagram.

Reading the diagram we first conclude that R′ does not contain triangles.
Also, R′ does not contain quadrangles (because for each vertex y at distance
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2 from reference vertex 0, there is exactly one path of length two from y to
0).

Finally in a similar manner we conclude that R′ contains cycles of length
5. Therefore R′ is a regular graph of valency 6 and girth 5, that is cage on
40 vertices. Such cage is unique up to isomorphism. Thus, ma2 = 〈〈R〉〉 and
m′ = 〈〈R′〉〉 are isomorphic.

10.4 Full automorphism group

According to the computations done by COCO, N = SL(2, 5) is a subgroup
of index 4 in G = Aut(ma2). (Note that Aut(R) = Aut(ma2), because
〈〈R〉〉 = ma2).

Our goal is to “legalize” this knowledge. Using group SL(2, 5) and some
of its overgroups, we will construct new model of graph R and will determine
its automorphism group.

We consider group GL(2, 5), Let K = HL(2, 5) be the subgroup of index
2 in GL(2, 5) consisting of matrices with square determinant (H stands for
half). Clearly, |K| = 1

2 |GL(2, 5)| = 240.
Let V = (GF (5))2 \ {0} be the set of non-zero row vectors of (GF (5))2.

It is easy to see that K acts transitively on V by right multiplication of a
row by a matrix.

Let O = {{x, y, z}|x, y, z ∈ V ∧ x 6= y ∧ x 6= z ∧ y 6= z ∧ x + y +
z = 0}. We note that 3 elements of a typical subset {x, y, z} ∈ O are
pairwise independent, in particular element z is uniquely determined by
x, y. Therefore |O| = 24·20

3! = 80.
Now we consider natural action of the group K on the set O by

{x, y, z}A = {xA, yA, zA}. We will regard o0 = {(1, 0), (0, 1), (4, 4)} as a
reference point in O.

Proposition 10.5. Group (K,O) has two orbits, each of length 40.

Proof. Let Ko0 be the stabilizer of o0 in K. Ko0 is of even order be-

cause

(

0 1
1 0

)

∈ Ko0 , therefore |Ko0 | 6= 3 implying that (K,O) is in-

transitive permutation group. Taking into account transitivity of group
(K,V ), let us distinguish different orbits for elements of O which have form
o = {(1, 0), (a, b), (−1 − a,−b)}.

Such element o belongs to the orbit of o0 for every b ∈ {1, 4} since the

matrix

(

1 0
a b

)

∈ K maps o0 to o. Considering “antireference” element

o0 = {(1, 0), (0, 2), (4, 3)} and using matrix

(

1 0
3a 3b

)

∈ K we get that o

belongs to the orbit of o0 if b ∈ {2, 3}. Note that matrix

(

1 0
0 2

)

6∈ K
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permutes orbits of o0 and o0. Finally, we get just two orbits of equal size,

noticing that (0, 1)

(

0 b
−1 −b

)

= (−1,−b).

Let Ω = oK
0 be the orbit of o0 under the action of K. Clearly |Ω| = 40.

Proposition 10.6. Transitive permutation group (K,Ω) has rank 10, with
four 2-orbits of valency 1, and six 2-orbits of valency 6.

Proof. Stabilizer Ko0 of o0 is of order 240
40 = 6. Note that any matrix whose

two rows are elements of o0 is in Ko0 , thus we get all of Ko0 explicitly:

Ko0 =

{

I,

(

0 1
1 0

)

,

(

0 1
4 4

)

,

(

4 4
0 1

)

,

(

1 0
4 4

)

,

(

4 4
1 0

)}

.

There are three other elements of Ω stabilized by Ko0 , namely o1 =
{(2, 0), (0, 2), (3, 3)}, o2 = {(3, 0), (0, 3), (2, 2)}, o3 = {(4, 0), (0, 4), (1, 1)}.

In a similar manner we get 6 representatives of orbits of length 6, thus
expiring all of set Ω. Here is a list of 10 2-orbits of (K,Ω) by representatives:

Ri = (o0, oi)
K for i = 0, 1, 2, 3.

R4 = (o0, {(0, 1), (1, 1), (4, 3)})K ,
R5 = (o0, {(0, 1), (1, 2), (4, 2)})K ,
R6 = (o0, {(0, 2), (2, 1), (3, 2)})K ,
R7 = (o0, {(0, 2), (2, 2), (3, 1)})K ,
R8 = (o0, {(0, 3), (2, 1), (3, 1)})K ,
R9 = (o0, {(0, 4), (1, 4), (4, 2)})K .

Proposition 10.7. Let Γ = (Ω, R5) be a graph, then Γ is a simple graph of
valency 6 and girth 5.

Proof. R5 can be described by
R5 =

{

({x, y, z}, {x, 2x + y, 3x + z})
∣

∣{x, y, z} ∈ Ω
}

.
Since ({x, 3x+z, 2x+y}, {x, 2x+3x+z = z, 3x+3x+y = y}) ∈ R5 as well,

R5 is symmetric, so Γ is a simple graph. Since K ≤ Aut(Γ), Aut(Γ) is edge
transitive, so to show that Γ has no triangles, it is enough to show that there
are no triangles containing edge {{(0, 1), (1, 0), (4, 4)} , {(0, 1), (1, 2), (4, 2)}}.

Neighbors of o0 = {(0, 1), (1, 0), (4, 4)} are n1 = {(0, 1), (1, 2), (4, 2)}
n2 = {(0, 1), (1, 3), (4, 1)}
n3 = {(1, 0), (1, 4), (3, 1)}
n4 = {(1, 0), (2, 1), (2, 4)}
n5 = {(2, 3), (4, 4), (4, 3)}
n6 = {(4, 4), (3, 2), (3, 4)}, and neighbors of n1 are {(0, 1), (1, 0), (4, 4)}
{(0, 1), (1, 4), (4, 0)}
{(1, 1), (1, 2), (3, 2)}
{(1, 2), (2, 0), (2, 3)}
{(2, 2), (4, 1), (4, 2)}

61



{(4, 2), (3, 0), (3, 3)}, so they have no common neighbors, and edge {o0, n1}
is not part of a triangle.

Similarly, we list all neighbors of n2, n3, n4, n5, n6, and see they have no
common neighbors other than o0, thus Γ has no quadrangles as well.

The matrix

(

0 1
4 2

)

is in K, maps o1 to n1 and is of order 5, so we have

a cycle of length 5 in Γ, thus Γ is of girth 5.

Corollary. The graph Γ is isomorphic to the unique cage on 40 vertices,
that is to the Anstee-Robertson graph R.

Proposition 10.8. G = Aut(R) is a group of order 480 which is isomorphic
to Z4.S5.

Proof. According to Proposition 10.1, G ∼= Z4.Y , where Y ≤ S5. We know
from Proposition 10.2 that Q ≤ G, where Q ∼= Z4.AGL(1, 5). It follows
from Proposition 10.5 and 10.6 that K ≤ G.

Note that K ∼= Z4.Y , where Y is subgroup of index 2 in PGL(2, 5) ∼= S5.
Thus clearly Y ∼= A5. Now we get that G/Z4 is an amalgam of subgroups
A5 and AGL(1, 5) which is subgroup of S5.

10.5 Locally icosahedral graph on 40 vertices

We have now description of group G = Aut(R) as an amalgam of groups Q
of order 80 and K of order 240. Alternative more dogmatic description of G
will be Z2.A5.Z2.Z2. In other words, G has a normal subgroup N ∼= SL(2, 5)
with G/N ∼= E22 . Therefore, for each of three involutions in E22 we get a
subgroup of index 2 in G. One of these groups is group K considered above,
two other are denoted by L, M . To distinguish them, we communicate infor-
mation obtained with the aid of COCO, namely L is of rank 9 with valencies
1,2,1,6,6,6,6,6,6, while M is of rank 11 with valencies 1,1,2,3,3,3,3,6,6,6,6.

Investigating merging association schemes for (Ω, 2 − orb(L,Ω)) and
(Ω, 2 − orb(M,Ω)) obtained with the aid of COCO, we see that there are
no surprises: besides (Ω, 2 − orb(G,Ω)) and m all other mergings are either
Schurian, decomposable or imprimitive rank 3 schemes.

Quite different picture appears from (Ω, 2 − orb(K,Ω)). Here COCO
returns 15 merging schemes. The list of schemes, besides predictable ones,
contains also two non-Schurian schemes of rank 9 and 8, the first is obtained
via merging of relations R4 and R7, while the other via mergings of relations
R6, R8 and R1, R2. The automorphism group of both mergings coincides
with group K.

In attempts to explain observed objects we became aware of [BloBBC85].

Proposition 10.9. a) There exists unique locally icosahedral graph ∆ on
40 vertices.
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Figure 10.2: Intersection diagram of graph ∆ with respect to Aut(∆)

b) Aut(∆) = K = HL(2, 5) is a group of order 240.

c) The intersection diagram of ∆ with respect to the orbits of a stabilizer of
a point in ∆ is presented in Figure 10.2.

d) The coherent closure of graph ∆ is a non-Schurian association scheme
with 7 classes described above.

Proof. a) It is proved in [BloBBC85] that there are precisely three locally
icosahedral graphs, namely 600-cell on 120 vertices and its quotients on
60 and 40 vertices.

Using GAP and construction (presented in [BloBBC85]) of the unique
locally icosahedral graph on 40 vertices, we obtained that its automor-
phism group is isomorphic (as a permutation group) to (K,Ω). Thus, this
graph, ∆, may be described as a merging of 2-orbits of (K,Ω), namely
of R4 and R9. Using the provided description of the 2-orbits, the reader
may easily verify that we indeed get a locally icosahedral graph.

Analysis of mergings of (Ω, 2 − orb(G,Ω)) shows that 〈〈∆〉〉 is a non-
Schurian rank 8 scheme and Aut(∆) = K. The intersection diagram
depicted in Figure 10.2 was constructed with the aid of GAP. It is easy
to see that two cells of size 1 (at distance 3 from reference vertex), as well
as two cells of size 6 and distance 2 from reference vertex (with external
valencies 13, 22, 3) may be compressed to a diagram with 8 cells exactly
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as it is depicted on p. 22 of [BloBBC85]. Now, using this fact of possible
compression, together with Lemma 2.1 we get another justification for
the existence of rank 8 non-Schurian merging.

Remarks.

1. Using COCO-II we found that the color automorphism group of
scheme (Ω, 2 − orb(K,Ω)) has order 480, while the algebraic auto-
morphism group of this scheme is isomorphic to E22 . In fact, this
group (in action on 2-orbits) consists of permutations e, τ1 = (4, 7),
τ2 = (1, 2)(6, 8), τ3 = (4, 7)(1, 2)(6, 8).

Note that τ3 is induced by the color automorphism group (which is
nothing else but group G). The centralizer algebra V (K,Ω) is com-
mutative, thus existence of τ2 follows from the well known fact: sym-
metrization of commutative scheme is an association scheme (see e.g.
[BanI84]). In this context the scheme 〈〈∆〉〉 provides a nice illustration
of a claim that symmetrization of commutative Schurian scheme is not
necessarily Schurian. Finally, τ2 and τ3 generate the whole algebraic
group. Thus existence of τ1 and corresponding non Schurian rank 9
merging is a simple by product of all the presented observations.

2. The group K is mentioned in [BloBBC85] as SL(2, 5)◦Z4. We believe
that we shed some new light on its origin and structure, as well as to
links with the Anstee-Robertson graph.

10.6 Some S-rings on 40 points

Our group G of order 480 has two conjugacy classes of regular subgroups of
order 40, both classes of size 6. The groups in two classes are isomorphic as
permutation groups, and are represented by one of the subgroups, R (as in
Proposition 10.2). GAP identifies this group as Z5 : Z8, or group number 3
in catalog of groups of order 40.

G has three subgroups of index 2, K = HL(2, 5), L and M . Of those,
only L and M admit the regular group R as a subgroup.

The group R can be defined by generators and relations as follows:

〈x, y|x5 = y8 = 1, xy = yx3〉

The existence of a regular group R in L and M allows us to interpret the
considered association schemes as S-rings over R.

The following proposition is presentation of computer results.

Proposition 10.10. a) The group L contains a regular subgroup R ∼= Z5 :
Z8. The transitivity module of L, T1 has the following basic sets:
T0 = {e}, T1 = {y, xy2, xy4, x4y6, y3, x4}, T2 = {y2, y6}, T3 = {y4}, T4 =

64



{y5, xy6, x, x4y2, y7, x4y4}, T5 = {xy, x2y7, x3y3, x2y4, x4y5, x3y4}, T6 =
{xy3, x2y6, x3y2, x2y, x4y3, x3y}, T7 = {xy5, x2y3, x3y7, x2, x4y, x3},
T8 = {xy7, x2y2, x3y6, x2y5, x4y7, x3y5}.

b) The following S-rings appear as mergings of basic sets of T1:
I1 = {T0, T1 ∪ T4, T2, T3, T5, T6 ∪ T8, T7},
I2 = {T0, T2 ∪ T3, T1 ∪ T4, T5 ∪ T6 ∪ T8, T7}.

c) The group M contains a regular subgroup R ∼= Z5 : Z8. The transitivity
module of M , T2, has the following basic sets:
S0 = {e}, S1 = {y, y3, x4y4, xy2, x4y6, x}, S2 = {y2, y6}, S3 = {y4},
S4 = {y5, y7, x4, xy6, x4y2, xy4}, S5 = {xy, xy5, x2y7, x2y3, x3y2, x3y6},
S6 = {xy3, x3, x2y}, S7 = {xy7, x3y4, x2y5}, S8 = {x2, x3y5, x4y7}, S9 =
{x2y2, x3y3, x3y7, x4y5, x2y6, x4y}, S10 = {x2y4, x3y, x4y3}.

d) The following S-rings appear as mergings of basic sets of T2:
I′

1 = {S0, S1 ∪ S4, S2, S3, S5 ∪ S9, S6 ∪ S8, S7 ∪ S10},
I′

2 = {S0, S2 ∪ S3, S1 ∪ S4, S5 ∪ S9 ∪ S7 ∪ S10, S6 ∪ S8}.

e) Robertson graph, R is a Cayley graph over R with connection set T7 or
S6 ∪ S8.

Proof. I1 is the transitivity module coming from G, I2 is non-Schurian
merging isomorphic to ma2. Similar explanation for I′

1, I′
2.

11 More objects on 40 and 50 points

In this section we describe a few other coherent configurations and associ-
ation schemes which are closely related to the main line of presentation in
our article.

11.1 Higmanian association scheme of type a3 on 40 points

A Schurian association scheme ma3 with valencies 1,3,6,6,24 appears twice
as a merging of classes in total graph coherent configuration T (5). Both
mergings provide isomorphic scheme with the automorphism group of order
7680. Using GAP, we identify this group as split extension E64 ⋊ S5.

The stabilizer of point is a subgroup of order 192, identified by GAP as
D4 × S4.

Parameter τ for this scheme is equal to 0. We hope to consider this
scheme ma3 with more detail in a forthcoming publication.
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11.2 Pentagon coherent configuration on 50 points

Use of coherent configurations as a starting point for construction of inter-
esting combinatorial structures provides more flexibility in comparison with
association schemes. In this and next sections we describe two coherent con-
figurations which may serve as a source for construction of HoSi. Roughly
speaking, we explain in terms of coherent configurations, how Moore graphs
of valency 2 and 3 may be extended to the Moore graph of valency 7.

Taking into account that a possible Moore graph of valency 57 can not
have a transitive permutation group ([Asc71], [Cam99]), analysis of the pre-
sented objects may help in future more advanced attempts to restrict possi-
ble sources from which a Moore graph of valency 57 may appear. We start
with a folklore observation, cf. [Haf03].

Proposition 11.1. The Hoffman-Singleton graph contains 1260 pentagons.

Proof. Let x be a reference vertex, N1(x) and N2(x) sets of vertices on
distance 1 and 2 from x. We know from Figure 3.8, that subgraph of HoSi
induced by N2(x) has valency 6. Clearly any edge of this subgraph together
with x defines a unique Petersen subgraph in HoSi. Thus for a concrete x
we get exactly 42·6

2 pentagon subgraphs containing x. Therefore, altogether
there are 126·50

5 = 1260 pentagons in HoSi.

Let us consider group D = D5 × AGL(1, 5) of order 200. Our goal is to
prove that the stabilizer of an arbitrary pentagon in HoSi coincides with D.
For this purpose we consider a certain starting natural intransitive action
of D and with its aid define a corresponding coherent configuration with 3
fibers of size 5,25,20. Our initial natural representation of D is on 10 points,
[0, 9], as follows:

D = 〈(0, 1, 2, 3, 4), (1, 4)(2, 3), (5, 6, 7, 8, 9)(6, 7, 9, 8)〉.

We define 3 sets: Ω1 = [0, 4], Ω2 is an orbit of 1-factor
{{0, 5}, {1, 6}, {2, 7}, {3, 8}, {4, 9}} with respect to D, Ω3 = [0, 4] × [5, 9].
For the reader’s convenience the list of elements of the set Ω = Ω1 ∪Ω2 ∪Ω3

as it was generated by COCO is presented in supplement C. Let XD =
(Ω, 2 − orb(D,Ω)).

Proposition 11.2. a) XD is rank 29 coherent configuration with three

fibers Ω1, Ω2 and Ω3 of type





3 1 3
1 6 3
3 3 6



.

b) Representatives of 2-orbits of (D,Ω) are presented in Table 11.1.

c) XD has 18 mergings association schemes, all the mergings are Schurian.
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0 (0,0) 1 (0,1) 2 (0,2) 3 (0,5)
4 (0,25) 5 (0,26) 6 (0,27) 7 (5,0)
8 (5,5) 9 (5,6) 10 (5,7) 11 (5,10)
12 (5,15) 13 (5,20) 14 (5,25) 15 (5,26)
16 (5,27) 17 (25,0) 18 (25,1) 19 (25,2)
20 (25,5) 21 (25,6) 22 (25,7) 23 (25,25)
24 (25,26) 25 (25,27) 26 (25,30) 27 (25,31)
28 (25,32)

Table 11.1: 2-orbits of group (D,Ω)

d) Two mergings, namely (0, 8, 23)(1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 16, 18, 19, 21,
22, 25, 26, 27, 28)(2, 4, 10, 14, 17, 20, 24) and (0, 8, 23)(1, 4, 9, 14, 17, 20, 25)
(2, 3, 5, 6, 7, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 26, 27, 28) correspond to
the rank 3 association scheme coming from the Hoffman-Singleton graph.

Proof. Originally, the presented results were obtained with the aid of COCO.
Data, which appears in (a) and (b) can be easily justified by hand compu-
tations. Results in (c) are indeed computer dependent.

It turns out that (d) may be justified without use of routine computa-
tions. For this purpose we need to identify elements of Ω with the vertices
in Robertson model of HoSi. First we have to decide whether pentagon
invariant with respect to (D, [0, 4]) or pentagram on the same set will be
considered. This explains origin of two possible mergings.

Assume, for example, that we start from the pentagon. After that we
need to establish a suitable bijection f between all elements of Ω2 and 20
vertices of the lower part of the Robertson model (other four pentagons).
We also establish a bijection g between elements of Ω3 and 25 vertices of
the upper part of the Robertson model (pentagrams).

As soon as f and g are established, we read our merging and compare
it with the rules of adjacency in Robertson model, concluding that they
coincide up to the used notation. We leave to the reader this computational
exercise.

Theorem 11.3. a) All 1260 pentagons of HoSi belong to the same orbit of
Aut(HoSi).

b) The full stabilizer of an arbitrary pentagon in Aut(HoSi) coincides with
group D.

Proof. It follows from Proposition 11.2 that stabilzier of a certain pentagon
in HoSi has order at least 200. Closer analysis of the suggested model in
spirit of James [Jam74] and Fan-Schwenk [FanS93] shows that in fact D is the
full stabilizer of a selected pentagon. Therefore the orbit of this pentagon
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in Aut(HoSi) has length 1260. According to Proposition 11.1, this orbit
involves all the pentagons in HoSi.

11.3 Petersen coherent configuration on 50 points

This time we are working in spirit of Jeurissen [Jeu83] and Hafner [Haf03],
[Haf04]. We fix arbitrary Petersen subgraph in HoSi, consider its stabilizer in
Aut(HoSi), and using corresponding coherent configuration with two fibers
of size 10 and 40 recover HoSi.

Proposition 11.4. The graph HoSi contains exactly 525 copies of the Pe-
tersen graph.

Proof. Simple purely combinatorial arguments (see [Jeu83]) show that:

• HoSi contains exactly 1750 3-claws;

• each 3-claw in HoSi is in precisely 3 Petersen subgraphs;

• Petersen graph has exactly 10 3-claws.

All this information implies that there are precisely 1750·3
10 = 525 Petersen

subgraphs in HoSi.

Proposition 11.5. a) Aut(HoSi) acts transitively on the set of Petersen
subgraphs.

b) Stabilizer of a Petersen subgraph in Aut(HoSi) has order 480.

Proof. Implicitely (a) is justified in [Jam74], evident formulation appears in
[Haf04]. Now (b) follows from Proposition 11.4.

Recall that Robertson graph R is obtained by deletion of P from HoSi.
We already know description of G = Aut(R) as a certain group of order 480,
while Aut(P ) has order 120. We need to get description of the stabilizer of
the Petersen graph in Aut(HoSi). For this purpose we consider action of G
on the set Ω′ = Ω′

1 ∪Ω′
2 where Ω′

1 is the vertex set of R, while Ω′
2 is the set

of 10 cells in the unique Anstee decomposition of R. We denote by XG the
coherent cofiguration (Ω′, 2 − orb(G,Ω′)) with two fibers.

Theorem 11.6. a) XG is a rank 16 coherent configuration with two fibers

of size 40 and 10 and type

(

7 3
3 3

)

.

b) Stabilizer of a cell in Ω′
2 is isomorphic to D4 × S3, a group of order 48.

c) Description of 2-orbits is presented in Table 11.2, the list of elements of
Ω′, as it is produced by GAP, is presented in Supplement C.
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0 (0,0) 1 (0,1) 2 (0,2) 3 (0,4)
4 (0,8) 5 (0,11) 6 (0,14) 7 (0,40)
8 (0,41) 9 (0,43) 10 (40,0) 11 (40,2)
12 (40,8) 13 (40,40) 14 (40,41) 15 (40,43)

Table 11.2: Representatives of 2-orbits of group (G,Ω′)

d) XG contains unique merging association scheme of rank 3 which corre-
sponds to HoSi.

Proof. We are aware of the fact that G acts on Ω′
1 as rank 7 group. It is

also clear that action of G ∼= Z4.S5 on Ω′
2 is not faithful, coinciding with the

rank 3 action of S5 on the vertices of the Petersen graph.
Considering vertices on distance 1 and 2 from the vertices of a prescribed

cell (which is comprised from nodes of size 1 and 3, depicted in the intersec-
tion diagram of graph R), we may elaborate proof of (b). As an immediate
conclusion we get orbits of length 4, 12 and 24 of the stabilizer of a selected
cell in R on the vertices in R. This justifies Table 11.2.

To prove (d) we get the only possibility to obtain a reg-
ular graph of valency 7 (and its complement), using merging
(0, 13)(5, 7, 10, 14)(1, 2, 3, 4, 6, 8, 9, 11, 12, 16).

More routine arguments may allow to prove that the merged graph of
valency 7 is strongly regular.

Corollary. Stabilizer of a Petersen graph in Aut(HoSi) is isomorphic
to the group G = Aut(R).

Remark. We attract the reader’s attention to two absolutely different
functions of the automorphisms of a Petersen graph P inside of HoSi.

If we prescribe a copy of P inside of HoSi then each automorphism of P
has four different extensions to an automorphism of HoSi which preserve a
selected copy of P .

If we consider R as a separate graph and select inside of it a copy of
P , then only 20 of 120 automorphisms of P may be extended to a suitable
automorphism of R.

11.4 Robertson association scheme

We may associate to the Robertson decomposition of HoSi two different
subgroups of Aut(HoSi):

• subgroup E which stabilizes each of the 10 cycles of length 5 in the
decomposition;

• the normalizer F of E in Aut(HoSi) which permutes 10 cycles of
length 5 as a whole.
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It turns out that E ∼= Z5, acting semiregularily on the vertices. This
immediately implies that XE = (Ω, 2 − orb(Z5,Ω)) is a rank 500 group.

In this context group F coincides with the group CAut(XE).
The group F turns out to be a transitive permutation group of order

2000. It has a nice description in terms of the stabilizer of an edge in the
flag graph of the unique projective plane of order 5 (see [Haf04] for details).
Here we provide just the results of computations with the aid of COCO
which will be analyzed in forthcoming publication.

Proposition 11.7. a) Group (F,Ω) is 2-closed.

b) (F,Ω) is rank 7 group with the subdegrees 1,2,2,5,10,10,20.

c) The association scheme (Ω, 2−orb(F,Ω)) has 8 merging schemes, among
them imprimitive rank 5 scheme with valencies 1,4,20,20,5 and two rank
3 schemes corresponding to HoSi.

Proof.

11.5 Two association schemes from the master coherent con-

figuration

We again come back to the action of group G = Aut(�5) of order 1920 on
coherent configuration n with 3 fibers of size 40, namely to the consideration
of restriction of n on second and third fibers.

Proposition 11.8. a) Both restrictions of n on second and third fibers de-
fine association schemes with 4 classes and valencies 1,3,4,8,24.

b) These two association schemes are not algebraically isomorphic.

c) Association scheme defined on the third fiber is unique up to isomor-
phism. It has as one of the merging schemes rank 3 scheme which is
defined by the point graph of generalized quadrangle W (3).

Proof. We use COCO in the proof. The uniqueness of a certain rank 5
scheme on 40 points was proved in [BanBB]. In [Ziv2006] it was proved that
this Bannai-Bannai-Bannai scheme is isomorphic to the one which appears
on the third fiber of n.

Remark. In fact, description of the scheme presented in [Ziv2006] is
given in slightly different terms in comparison with this article, using as
initial object auxiliary graph 5 ◦ K5 instead of �5. We intend to consider
this scheme once more in a forthcoming joint paper of K. Abdukhalikov, E.
Bannai, M.K. and M.Z-A.
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12 Concluding comments

12.1 Higman’s heritage

Almost all concepts considered in this article were originaly discussed by
Higman, either evidently or in a hidden form. This counts in particular
rank 3 graphs, strongly regular graphs, generalized quadrangles, partial lin-
ear spaces, geometric graphs, association schemes, imprimitivity, quotient
schemes and many others. While for many lines in Algebraic Combina-
torics, Higman should be regarded as one of the founders, it is a concept of
a coherent configuration which forever will be attributed to Higman’s name.

Association schemes, a particular case of coherent configurations, were
introduced by R. C. Bose and his coworkers, its concrete case called trans-
lation scheme goes back to I. Schur. In comparison, coherent configurations
provide a much more wide natural framework for formulation and classifi-
cation of various important structures in combinatorics and geometry, like
designs, linked designs, partial geometries, etc. In fact, Higman and a few of
his close coworkers were the first who started to consider suitable structures
in most natural fashion as a coherent configuration with prescribed amount
of fibers, prescribed type, and moreover prescribed intersection numbers.

Input of Higman into theory of association schemes is also very sig-
nificant. Before formulation of CFSG he was the main driving force in
classification of rank 3 groups, and one of the founders of the theory of
strongly regular graphs. Discovery of Higman-Sims graph on 100 vertices
was based on a clever combination of combinatorial and group theoretical
arguments. (Note that the graph itself was outlined by Mesner in his Ph.D
thesis [Mes56], however lack of the use of group theoretical arguments did
not imply earlier discovery of the corresponding sporadic simple group.)

Paper [Hig95] was one of the last Higman’s publications. It contains
all necessary roots for a start of systematical investigation of rank 5 asso-
ciation schemes. We hope that the presented results of computer algebra
experimentation with such objects will help to promote further interest in
this topic. In particular, search for all small such schemes seems to be an
attractive lead.

12.2 Cellular agebras and graph isomorphism problem

A paper [WeiL68] was published in Russian in a specialized journal with a
very limited distribution and was not easily available even in former USSR.
It contains a short introduction to the concept of a cellular algebra (almost
coinciding with coherent algebra) together with a description of operation
“Y” (part of the title of a famous cultist Soviet fun movie), which is nowa-
days called Weisfeiler-Leman algorithm for the construction of the coherent
closure of a given matrix. The subject and style of the paper, as well as the
names of the authors, from the very beginning became a target of attacks of

71



certain antisemitic leaders of Soviet mathematics (see [KliRRT99], [Bab99]).
Only in 1976 the results coming from Soviet school became available to a
wide mathematical audience (see [Wei76]). After a publication by Higman
of his paper [Hig87], the terminology of cellular algebras became obsolete.
Nowadays coherent algebras are commonly used as a sign of amalgamation
of ideas coming from two independent origins.

The main reason of appearance of cellular algebras was their natural link
to the graph isomorphism problem. Indeed, coherent closure 〈〈Γ〉〉 of a given
graph Γ may serve as a source of various algebraic invariants of Γ, and this
source may be computed in a polynomial time on the number of vertices.
While initial naive hopes for an elaboration of efficient algorithm for graph
identification quickly failed (see [KliRRT99]), still this concept is very useful
in analysis of possible difficulties of the problem.

One more attempt to renew investigations related to this problem was
initiated in [Rud02]. Looking at invariants coined in this paper, we came to
conclusion that the total graph coherent configuration may provide a more
systematic way to attack graph isomorphism problem, see [Ziv], [KliZJ]. Our
interest in classification of mergings of total graph coherent configurations
stems from the mentioned new incarnation of old hopes to achieve an efficient
recognition algorithm.

12.3 Coxeter group D5

Coxeter group D5 of order 1920 is in a sense one of the main group theoretical
heroes of this article.

There are a few natural ways to represent this group in conjunction with
a relevant combinatorial or geometrical structure, among them graph 5 ◦ K5

on 10 vertices, �5 on 16 vertices, 5-dimensional cube on 32 vertices, and last
but not least, 40 roots of the corresponding root system. While presentation
in [KliZ06] was based on the use of 5 ◦ K5, in this paper we accepted �5 as
the starting structure.

We believe that there is still fresh potential to arrange an alternative
new glance on some of considered coherent configurations and association
schemes, starting for example from the action on 40 roots. Hopefully this
potential will be exploited in subsequent publications.

In a triality (as it is interpreted by Higman in [Hig95]) the starting
group G has three non equivalent conjugacy classes of subgroups H1, H2,
H3, which are becoming equivalent under action of overgroup G.S3. This
implies existence of a coherent configuration with 3 fibers of equal size, as
well as of a merging association scheme glueing all the 3 fibers.

Our master coherent configuration n serves as a certain weak combi-
natorial analogue of the classical triality. Indeed, we get here three non-
equivalent fibers of the same size, and moreover each fiber induces associ-
ation scheme with 4 classes. Two of the fibers produce a classical partial
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linear space S1, namely a generalized quadrangle Q(4, 3), while other pair of
fibers produces partial linear space S2 with some nice properties. We refer
to [KliR03] where similar exceptional pair of square incidence structures (96
points and 96 lines) was discovered. In both cases a new partial linear space
appears as a kind of a satellite of a classical generalized quadrangle.

More such examples are desired.

12.4 Exceptional cages

Moore graphs provide the most exceptional examples of cages. The Hoffman-
Singleton graph corresponds to a certain rank 3 group, which appears as
a sporadic permutation representation of a “usual” classical group. The
existence of such representation probably explains why the graph HoSi was
discovered on the early dawn of theory (1960), that is three years before the
time when the general concept of a strongly regular graph was coined by
Bose in his seminal paper [Bos63].

As it was mentioned, a possible Moore graph of valency 57 can not have a
transitive automorphism group, it was already Aschbacher who proved that
association scheme with two classes defined by such a graph is non-Schurian.
These two facts together imply that the desired association scheme (if it
exists and appears as a merging) may come only as a fusion of a suitable
coherent configuration with at least two fibers. In this context a few coherent
configurations on 50 points exposed in Section 11 may provide a helpful
training place in order to guess a good candidate to achieve a Moore graph
on 3250 vertices.

Speculating again about possible ways to attempt a Moore graph Γ of
valency 57, one may claim that start from a suitable coherent configuration
means in a sense that we are taking only part of information about symmetry
of Γ. In contrary, another attractive way would be to embed Γ into a suitable
larger structure ∆, such that finally Aut(Γ) will be a subgroup (possibly
proper) of Aut(∆).

The approach proposed by us, of total graph coherent configurations
in case when Γ = HoSi, allows to reach a much larger graph ∆ such that
Aut(∆) is isomorphic to the automorphism group of the Higman-Sims graph.

Graph ∆ is achieved by a very dogmatic procedure (any insight is not
requested), using a computer, as a merging in total graph coherent config-
uration for Γ. We refer to [KliZJ] for a discussion of similar expectations
related to Γ in a role of Moore graph of valency 57.

Note that HoSi may be also regarded as a (non-bipartite) coherent cage.
The (bipartite) Levi graphs of generalized polygons provide infinite series of
other coherent cages. In this relation the Anstee-Robertson graph is one of
the first (if not the first) of sporadic coherent cages. In our eyes, the search
for new similar examples may be an attractive lead on the edge between
extremal graph theory and coherent configurations.
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12.5 Computer and mathematician: a bilateral interplay

Most of results of Higman in area of graph theory and combinatorics were
motivated by his expertise from group theory. Though Higman was one
of the pioneers in defining efficient techniques which help to distinguish
Schurian and non-Schurian association schemes (see e.g. [HesH71]), his main
interests were related to the consideration of orbital graphs (as they appear
in seminal papers [Hig67], [Sim67]), or 2-orbits in Wielandt’s terminology
(which is used in this paper).

The concept of orbital graph and more generally of a Schurian coherent
configuration may be adequately represented in terms of a group, certain
subgroups, and suitable systems of cosets and double cosets. This is the
language that was mostly used in papers of Higman, his coworkers and his
followers.

Nowadays, with development of computer possibilities, more and more
investigation in algebraic combinatorics are related to non-Schurian objects.
This dictates certain objective changes in standards of behavior of a math-
ematician. In many cases an expert trusts more a computer rather than
a mathematician. Many computer aided constructions are in principle not
observable in a friendly form by a human. In the course of manipulation
with coherent configuration of a huge rank, the use of traditional language
of coset diagrams may be less efficient.

In this article we are trying to submit a few new patterns of a com-
puter practice with combinatorial objects, which conceptually go back to
the methodology of representation of 2-orbits in COCO. We believe that in
certain cases these patterns are advantageous, allowing to involve visually
clear geometrical images as an auxiliary tool, suitable even for proofs.

12.6 Looking forward

Use of groups of algebraic automorphisms of coherent configurations con-
ceptually goes back to Higman as well as to Weisfeiler and Leman (see
[KliMPWZ07] for more information).

Practical manipulations with these objects are heavily computer depen-
dent, this is why interesting non-trivial examples of non-Schurian algebraic
mergings and of twins were detected quite recently, [KliMRR05] is one of
the first sources. Everything here is in a very beginning. Our empirical
observations show that the size of the algebraic group is not a crucial issue.
In this article, the reader meets examples of configurations with huge alge-
braic groups without proper algebraic automorphisms at all and with small
groups containing proper automorphisms.

In this context, WFDF configurations are mostly attractive with their
large agebraic groups, mostly consisting of proper automorphisms. Our
experience to deal with WFDF configurations on 16, 28 and 40 vertices
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shows that we are quickly approaching upper bound for the opportunities
to investigate lattice of subgroups and corresponding algebraic mergings
with the aid of modern computer algebra facilities. New theoretical insights
are badly needed in order to promote efficient use of this concept.

On other hand, capacity of possibilities of WFDF configurations seems
to be unlimited. Recent discovery of numerous new infinite series of strongly
regular graphs in [Muz07] confirms such hope.

We also mention other suggested innovations: proof of the uniqueness
of association scheme ma2 and computer enumeration of all Deza families in
Higmanian houses on 40 points. The latter problem still has reserve for a
more clever solution: to avoid knowledge of Ted Spence’s catalog of strongly
regular graphs, approaching only “promising” graphs, leading to at least one
solution.

This text is regarded by the authors as a comprehensive technical report
about the results of the fulfilled project. An essentially reduced version will
be soon submitted for a regular publication.
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Supplements

A Data related to partial linear space S2

40 quadrangles of �5

0 0,1,2,3 1 0,1,4,5 2 0,1,8,9 3 0,1,14,15
4 0,2,4,6 5 0,2,8,10 6 0,2,13,15 7 0,4,8,12
8 0,4,11,15 9 0,7,8,15 10 1,3,5,7 11 1,3,9,11
12 1,3,12,14 13 1,5,9,13 14 1,5,10,14 15 1,6,9,14
16 2,3,6,7 17 2,3,10,11 18 2,3,12,13 19 2,5,10,13
20 2,6,9,13 21 2,6,10,14 22 3,4,11,12 23 3,7,8,12
24 3,7,11,15 25 4,5,6,7 26 4,5,10,11 27 4,5,12,13
28 4,6,9,11 29 4,6,12,14 30 5,7,8,10 31 5,7,13,15
32 6,7,8,9 33 6,7,14,15 34 8,9,10,11 35 8,9,12,13
36 8,10,12,14 37 9,11,13,15 38 10,11,14,15 39 12,13,14,15

40 edges of �5 and lines of S2

0 0,1 0,1,2,3 1 0,2 0,4,5,6 2 0,4 1,4,7,8 3 0,8 2,5,7,9
4 0,15 3,6,8,9 5 1,3 0,10,11,12 6 1,5 1,10,13,14 7 1,9 2,11,13,15
8 1,14 3,12,14,15 9 2,3 0,16,17,18 10 2,6 4,16,20,21 11 2,10 5,17,19,21
12 2,13 6,18,19,20 13 3,7 10,16,23,24 14 3,11 11,17,22,24 15 3,12 12,18,22,23
16 4,5 1,25,26,27 17 4,6 4,25,28,29 18 4,11 8,22,26,28 19 4,12 7,22,27,29
20 5,7 10,25,30,31 21 5,10 14,19,26,30 22 5,13 13,19,27,31 23 6,7 16,25,32,33
24 6,9 15,20,28,32 25 6,14 15,21,29,33 26 7,8 9,23,30,32 27 7,15 9,24,31,33
28 8,9 2,32,34,35 29 8,10 5,30,34,36 30 8,12 7,23,35,36 31 9,11 11,28,34,37
32 9,13 13,20,35,37 33 10,11 17,26,34,38 34 10,14 14,21,36,38 35 11,15 8,24,37,38
36 12,13 18,27,35,39 37 12,14 12,29,36,39 38 13,15 6,31,37,39 39 14,15 3,33,38,39

14 paths of length 2 in Γ2

{{0, 1, 2, 3}, {0, 1, 8, 9}, {0, 1, 4, 5}}
{{0, 1, 2, 3}, {0, 1, 14, 15}, {0, 1, 4, 5}}
{{0, 1, 2, 3}, {0, 2, 4, 6}, {0, 1, 4, 5}}
{{0, 1, 2, 3}, {1, 3, 5, 7}, {0, 1, 4, 5}}
{{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 4, 8, 12}}
{{0, 1, 2, 3}, {0, 1, 8, 9}, {0, 4, 8, 12}}
{{0, 1, 2, 3}, {0, 2, 4, 6}, {0, 4, 8, 12}}
{{0, 1, 2, 3}, {0, 2, 8, 10}, {0, 4, 8, 12}}
{{0, 1, 2, 3}, {0, 1, 4, 5}, {4, 5, 6, 7}}
{{0, 1, 2, 3}, {0, 2, 4, 6}, {4, 5, 6, 7}}
{{0, 1, 2, 3}, {1, 3, 5, 7}, {4, 5, 6, 7}}
{{0, 1, 2, 3}, {2, 3, 6, 7}, {4, 5, 6, 7}}
{{0, 1, 2, 3}, {0, 1, 4, 5}, {4, 5, 10, 11}}
{{0, 1, 2, 3}, {2, 3, 10, 11}, {4, 5, 10, 11}}
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B Data related to algebraic group of WFDF co-

herent configuration on 40 points

Representatives of basic relations of W

0 〈0, 0〉 1 〈0, 1〉 2 〈0, 2〉 3 〈0, 3〉 4 〈0, 4〉
5 〈0, 5〉 6 〈0, 6〉 7 〈0, 7〉 8 〈0, 8〉 9 〈0, 9〉
10 〈0, 25〉 11 〈0, 26〉 12 〈0, 27〉 13 〈0, 28〉 14 〈0, 29〉
15 〈0, 34〉 16 〈0, 35〉 17 〈0, 36〉 18 〈0, 39〉 19 〈1, 0〉
20 〈1, 1〉 21 〈1, 2〉 22 〈1, 3〉 23 〈1, 4〉 24 〈1, 5〉
25 〈1, 6〉 26 〈1, 7〉 27 〈1, 8〉 28 〈1, 9〉 29 〈1, 16〉
30 〈1, 17〉 31 〈1, 18〉 32 〈1, 20〉 33 〈1, 21〉 34 〈1, 34〉
35 〈1, 35〉 36 〈1, 36〉 37 〈1, 38〉 38 〈2, 0〉 39 〈2, 1〉
40 〈2, 2〉 41 〈2, 3〉 42 〈2, 4〉 43 〈2, 5〉 44 〈2, 6〉
45 〈2, 7〉 46 〈2, 8〉 47 〈2, 9〉 48 〈2, 16〉 49 〈2, 17〉
50 〈2, 18〉 51 〈2, 19〉 52 〈2, 21〉 53 〈2, 25〉 54 〈2, 27〉
55 〈2, 29〉 56 〈2, 33〉 57 〈3, 0〉 58 〈3, 1〉 59 〈3, 2〉
60 〈3, 3〉 61 〈3, 4〉 62 〈3, 5〉 63 〈3, 6〉 64 〈3, 7〉
65 〈3, 8〉 66 〈3, 9〉 67 〈3, 16〉 68 〈3, 17〉 69 〈3, 18〉
70 〈3, 19〉 71 〈3, 20〉 72 〈3, 25〉 73 〈3, 26〉 74 〈3, 28〉
75 〈3, 32〉 76 〈4, 0〉 77 〈4, 1〉 78 〈4, 2〉 79 〈4, 3〉
80 〈4, 4〉 81 〈4, 5〉 82 〈4, 6〉 83 〈4, 7〉 84 〈4, 8〉
85 〈4, 9〉 86 〈4, 10〉 87 〈4, 11〉 88 〈4, 12〉 89 〈4, 13〉
90 〈4, 14〉 91 〈4, 34〉 92 〈4, 35〉 93 〈4, 36〉 94 〈4, 37〉
95 〈5, 0〉 96 〈5, 1〉 97 〈5, 2〉 98 〈5, 3〉 99 〈5, 4〉
100 〈5, 5〉 101 〈5, 6〉 102 〈5, 7〉 103 〈5, 8〉 104 〈5, 9〉
105 〈5, 10〉 106 〈5, 11〉 107 〈5, 12〉 108 〈5, 13〉 109 〈5, 15〉
110 〈5, 25〉 111 〈5, 27〉 112 〈5, 29〉 113 〈5, 31〉 114 〈6, 0〉
115 〈6, 1〉 116 〈6, 2〉 117 〈6, 3〉 118 〈6, 4〉 119 〈6, 5〉
120 〈6, 6〉 121 〈6, 7〉 122 〈6, 8〉 123 〈6, 9〉 124 〈6, 10〉
125 〈6, 11〉 126 〈6, 12〉 127 〈6, 14〉 128 〈6, 15〉 129 〈6, 25〉
130 〈6, 26〉 131 〈6, 28〉 132 〈6, 30〉 133 〈7, 0〉 134 〈7, 1〉
135 〈7, 2〉 136 〈7, 3〉 137 〈7, 4〉 138 〈7, 5〉 139 〈7, 6〉
140 〈7, 7〉 141 〈7, 8〉 142 〈7, 9〉 143 〈7, 10〉 144 〈7, 11〉
145 〈7, 13〉 146 〈7, 14〉 147 〈7, 15〉 148 〈7, 16〉 149 〈7, 17〉
150 〈7, 21〉 151 〈7, 24〉 152 〈8, 0〉 153 〈8, 1〉 154 〈8, 2〉
155 〈8, 3〉 156 〈8, 4〉 157 〈8, 5〉 158 〈8, 6〉 159 〈8, 7〉
160 〈8, 8〉 161 〈8, 9〉 162 〈8, 10〉 163 〈8, 12〉 164 〈8, 13〉
165 〈8, 14〉 166 〈8, 15〉 167 〈8, 16〉 168 〈8, 18〉 169 〈8, 20〉
170 〈8, 23〉 171 〈9, 0〉 172 〈9, 1〉 173 〈9, 2〉 174 〈9, 3〉
175 〈9, 4〉 176 〈9, 5〉 177 〈9, 6〉 178 〈9, 7〉 179 〈9, 8〉
180 〈9, 9〉 181 〈9, 11〉 182 〈9, 12〉 183 〈9, 13〉 184 〈9, 14〉
185 〈9, 15〉 186 〈9, 17〉 187 〈9, 18〉 188 〈9, 19〉 189 〈9, 22〉
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Generators of E24 in action on Ω

(4, 10)(5, 11)(6, 12)(7, 13)(8, 14)(9, 15)(19, 22)(20, 23)(21, 24)(28, 30)(29, 31)(36, 37),
(1, 16)(2, 17)(3, 18)(7, 21)(8, 20)(9, 19)(13, 24)(14, 23)(15, 22)(26, 32)(27, 33)(35, 38),
(0, 25)(2, 27)(3, 26)(5, 29)(6, 28)(9, 22)(11, 31)(12, 30)(15, 19)(17, 33)(18, 32)(34, 39),
(0, 34)(1, 35)(3, 32)(4, 36)(6, 30)(8, 23)(10, 37)(12, 28)(14, 20)(16, 38)(18, 26)(25, 39)

List of Fibers of W

{0, 25, 34, 39} {1, 16, 35, 38} {2, 17, 27, 33} {3, 18, 26, 32} {4, 10, 36, 37}
{5, 11, 29, 31} {6, 12, 28, 30} {7, 13, 21, 24} {8, 14, 20, 23} {9, 15, 19, 22}

Generators of CAut(W ) in action on Ω

(8, 14)(20, 23)
(2, 3)(5, 6)(7, 8)(11, 12)(13, 14)(17, 18)(20, 21)(23, 24)(26, 27)(28, 29)(30, 31)(32, 33)(34, 39)(35, 38)(36, 37)
(1, 2)(4, 5)(8, 9)(10, 11)(14, 15)(16, 17)(19, 20)(22, 23)(25, 34)(26, 32)(27, 35)(28, 30)(29, 36)(31, 37)(33, 38)
(1, 4)(2, 5)(3, 6)(10, 16)(11, 17)(12, 18)(13, 21)(14, 20)(15, 19)(26, 28)(27, 29)(30, 32)(31, 33)(35, 36)(37, 38)
(0, 1)(5, 7)(6, 8)(11, 13)(12, 14)(16, 25)(17, 27)(18, 26)(19, 22)(20, 28)(21, 29)(23, 30)(24, 31)(34, 35)(38, 39)

Generators of CAut(W ) in action on R

(84, 90)(122, 127)(141, 146)(156, 162)(158, 163)(159, 164)(161, 166)(179, 184)

(2, 3)(5, 6)(7, 8)(11, 12)(13, 14)(15, 18)(21, 22)(24, 25)(26, 27)(30, 31)(32, 33)
(35, 37)(38, 57)(39, 58)(40, 60)(41, 59)(42, 61)(43, 63)(44, 62)(45, 65)(46, 64)(47, 66)
(48, 67)(49, 69)(50, 68)(51, 70)(52, 71)(53, 72)(54, 73)(55, 74)(56, 75)(78, 79)(81, 82)
(83, 84)(87, 88)(89, 90)(93, 94)(95, 114)(96, 115)(97, 117)(98, 116)(99, 118)(100, 120)

(101, 119)(102, 122)(103, 121)(104, 123)(105, 124)(106, 126)(107, 125)(108, 127)(109, 128)
(110, 129)(111, 130)(112, 131)(113, 132)(133, 152)(134, 153)(135, 155)(136, 154)(137, 156)
(138, 158)(139, 157)(140, 160)(141, 159)(142, 161)(143, 162)(144, 163)(145, 165)(146, 164)
(147, 166)(148, 167)(149, 168)(150, 169)(151, 170)(173, 174)(176, 177)(178, 179)(181, 182)

(183, 184)(186, 187)

(1, 2)(4, 5)(8, 9)(10, 15)(12, 16)(14, 17)(19, 38)(20, 40)(21, 39)(22, 41)(23, 43)
(24, 42)(25, 44)(26, 45)(27, 47)(28, 46)(29, 49)(30, 48)(31, 50)(32, 51)(33, 52)(34, 53)
(35, 54)(36, 55)(37, 56)(58, 59)(61, 62)(65, 66)(67, 68)(70, 71)(73, 75)(76, 95)(77, 97)

(78, 96)(79, 98)(80, 100)(81, 99)(82, 101)(83, 102)(84, 104)(85, 103)(86, 106)
(87, 105)(88, 107)(89, 108)(90, 109)(91, 110)(92, 111)(93, 112)(94, 113)(115, 116)

(118, 119)(122, 123)(124, 125)(127, 128)(131, 132)(134, 135)(137, 138)(141, 142)(143, 144)
(146, 147)(148, 149)(152, 171)(153, 173)(154, 172)(155, 174)(156, 176)(157, 175)(158, 177)
(159, 178)(160, 180)(161, 179)(162, 181)(163, 182)(164, 183)(165, 185)(166, 184)(167, 186)

(168, 187)(169, 188)(170, 189)

(1, 4)(2, 5)(3, 6)(11, 13)(12, 14)(16, 17)(19, 76)(20, 80)(21, 81)(22, 82)(23, 77)
(24, 78)(25, 79)(26, 83)(27, 84)(28, 85)(29, 86)(30, 87)(31, 88)(32, 90)(33, 89)(34, 91)

(35, 93)(36, 92)(37, 94)(38, 95)(39, 99)(40, 100)(41, 101)(42, 96)(43, 97)(44, 98)
(45, 102)(46, 103)(47, 104)(48, 105)(49, 106)(50, 107)(51, 109)(52, 108)(53, 110)
(54, 112)(55, 111)(56, 113)(57, 114)(58, 118)(59, 119)(60, 120)(61, 115)(62, 116)
(63, 117)(64, 121)(65, 122)(66, 123)(67, 124)(68, 125)(69, 126)(70, 128)(71, 127)

(72, 129)(73, 131)(74, 130)(75, 132)(134, 137)(135, 138)(136, 139)(143, 148)(144, 149)
(145, 150)(153, 156)(154, 157)(155, 158)(162, 167)(163, 168)(165, 169)(172, 175)(173, 176)

(174, 177)(181, 186)(182, 187)(185, 188)

(0, 20)(1, 19)(2, 21)(3, 22)(4, 23)(5, 26)(6, 27)(7, 24)(8, 25)(9, 28)(10, 29)
(11, 31)(12, 30)(13, 32)(14, 33)(15, 35)(16, 34)(17, 36)(18, 37)(38, 39)(43, 45)(44, 46)
(48, 53)(49, 54)(52, 55)(57, 58)(62, 64)(63, 65)(67, 72)(69, 73)(71, 74)(76, 77)(81, 83)
(82, 84)(87, 89)(88, 90)(91, 92)(95, 134)(96, 133)(97, 135)(98, 136)(99, 137)(100, 140)

(101, 141)(102, 138)(103, 139)(104, 142)(105, 143)(106, 145)(107, 146)(108, 144)(109, 147)
(110, 148)(111, 149)(112, 150)(113, 151)(114, 153)(115, 152)(116, 154)(117, 155)(118, 156)
(119, 159)(120, 160)(121, 157)(122, 158)(123, 161)(124, 162)(125, 164)(126, 165)(127, 163)
(128, 166)(129, 167)(130, 168)(131, 169)(132, 170)(171, 172)(176, 178)(177, 179)(181, 183)

(182, 184)(188, 189)
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Generators of AAut(W ) in action on R

(41, 50)(47, 51)(59, 68)(173, 186)

(2, 3)(5, 6)(7, 8)(11, 12)(13, 14)(15, 18)(21, 22)(24, 25)(26, 27)(30, 31)(32, 33)
(35, 37)(38, 57)(39, 58)(40, 60)(41, 59)(42, 61)(43, 63)(44, 62)(45, 65)(46, 64)(47, 66)
(48, 67)(49, 69)(50, 68)(51, 70)(52, 71)(53, 72)(54, 73)(55, 74)(56, 75)(78, 79)(81, 82)
(83, 84)(87, 88)(89, 90)(93, 94)(95, 114)(96, 115)(97, 117)(98, 116)(99, 118)(100, 120)

(101, 119)(102, 122)(103, 121)(104, 123)(105, 124)(106, 126)(107, 125)(108, 127)(109, 128)
(110, 129)(111, 130)(112, 131)(113, 132)(133, 152)(134, 153)(135, 155)(136, 154)(137, 156)
(138, 158)(139, 157)(140, 160)(141, 159)(142, 161)(143, 162)(144, 163)(145, 165)(146, 164)
(147, 166)(148, 167)(149, 168)(150, 169)(151, 170)(173, 174)(176, 177)(178, 179)(181, 182)

(183, 184)(186, 187)

(1, 2)(4, 5)(8, 9)(10, 15)(12, 16)(14, 17)(19, 38)(20, 40)(21, 39)(22, 41)(23, 43)
(24, 42)(25, 44)(26, 45)(27, 47)(28, 46)(29, 49)(30, 48)(31, 50)(32, 51)(33, 52)(34, 53)
(35, 54)(36, 55)(37, 56)(58, 59)(61, 62)(65, 66)(67, 68)(70, 71)(73, 75)(76, 95)(77, 97)

(78, 96)(79, 98)(80, 100)(81, 99)(82, 101)(83, 102)(84, 104)(85, 103)(86, 106)
(87, 105)(88, 107)(89, 108)(90, 109)(91, 110)(92, 111)(93, 112)(94, 113)(115, 116)

(118, 119)(122, 123)(124, 125)(127, 128)(131, 132)(134, 135)(137, 138)(141, 142)(143, 144)
(146, 147)(148, 149)(152, 171)(153, 173)(154, 172)(155, 174)(156, 176)(157, 175)(158, 177)
(159, 178)(160, 180)(161, 179)(162, 181)(163, 182)(164, 183)(165, 185)(166, 184)(167, 186)

(168, 187)(169, 188)(170, 189)

(1, 4)(2, 5)(3, 6)(11, 13)(12, 14)(16, 17)(19, 76)(20, 80)(21, 81)(22, 82)(23, 77)
(24, 78)(25, 79)(26, 83)(27, 84)(28, 85)(29, 86)(30, 87)(31, 88)(32, 90)(33, 89)(34, 91)

(35, 93)(36, 92)(37, 94)(38, 95)(39, 99)(40, 100)(41, 101)(42, 96)(43, 97)(44, 98)
(45, 102)(46, 103)(47, 104)(48, 105)(49, 106)(50, 107)(51, 109)(52, 108)(53, 110)
(54, 112)(55, 111)(56, 113)(57, 114)(58, 118)(59, 119)(60, 120)(61, 115)(62, 116)
(63, 117)(64, 121)(65, 122)(66, 123)(67, 124)(68, 125)(69, 126)(70, 128)(71, 127)

(72, 129)(73, 131)(74, 130)(75, 132)(134, 137)(135, 138)(136, 139)(143, 148)(144, 149)
(145, 150)(153, 156)(154, 157)(155, 158)(162, 167)(163, 168)(165, 169)(172, 175)(173, 176)

(174, 177)(181, 186)(182, 187)(185, 188)

(0, 20)(1, 19)(2, 21)(3, 22)(4, 23)(5, 26)(6, 27)(7, 24)(8, 25)(9, 28)(10, 29)
(11, 31)(12, 30)(13, 32)(14, 33)(15, 35)(16, 34)(17, 36)(18, 37)(38, 39)(43, 45)(44, 46)
(48, 53)(49, 54)(52, 55)(57, 58)(62, 64)(63, 65)(67, 72)(69, 73)(71, 74)(76, 77)(81, 83)
(82, 84)(87, 89)(88, 90)(91, 92)(95, 134)(96, 133)(97, 135)(98, 136)(99, 137)(100, 140)

(101, 141)(102, 138)(103, 139)(104, 142)(105, 143)(106, 145)(107, 146)(108, 144)(109, 147)
(110, 148)(111, 149)(112, 150)(113, 151)(114, 153)(115, 152)(116, 154)(117, 155)(118, 156)
(119, 159)(120, 160)(121, 157)(122, 158)(123, 161)(124, 162)(125, 164)(126, 165)(127, 163)
(128, 166)(129, 167)(130, 168)(131, 169)(132, 170)(171, 172)(176, 178)(177, 179)(181, 183)

(182, 184)(188, 189)

Merging of classes of W resulting in scheme isomorphic to m6.1

0, 20, 40, 60, 80, 100, 120, 140, 160, 180

1, 2, 3, 4, 5, 6, 19, 21, 22, 23, 26, 27, 38, 39, 41, 43, 45, 47, 57, 58, 59, 63,
65, 66, 76, 77, 81, 82, 83, 84, 95, 97, 99, 101, 102, 104, 114, 117, 118, 119,
122, 123, 134, 135, 137, 138, 141, 142, 153, 155, 156, 158, 159, 161, 173, 174,
176, 177, 178, 179

7, 8, 9, 24, 25, 28, 42, 44, 46, 61, 62, 64, 78, 79, 85, 96, 98, 103, 115, 116,
121, 133, 136, 139, 152, 154, 157, 171, 172, 175

10, 15, 18, 29, 35, 37, 49, 54, 56, 69, 73, 75, 86, 93, 94, 106, 112, 113, 126,
131, 132, 145, 150, 151, 165, 169, 170, 185, 188, 189

11, 12, 13, 14, 16, 17, 30, 31, 32, 33, 34, 36, 48, 50, 51, 52, 53, 55, 67, 68, 70,
71, 72, 74, 87, 88, 89, 90, 91, 92, 105, 107, 108, 109, 110, 111, 124, 125, 127,
128, 129, 130, 143, 144, 146, 147, 148, 149, 162, 163, 164, 166, 167, 168, 181,
182, 183, 184, 186, 187

87



Merging of classes of W resulting in scheme isomorphic to m2.1

0, 20, 40, 60, 80, 100, 120, 140, 160, 180

1, 3, 5, 12, 13, 17, 19, 21, 27, 31, 33, 36, 39, 50, 51, 52, 53, 55, 57, 66, 67,
68, 71, 74, 81, 82, 83, 90, 91, 92, 95, 99, 102, 104, 107, 111, 118, 125, 127,
128, 129, 130, 137, 138, 141, 147, 148, 149, 153, 159, 162, 163, 166, 168, 174,
176, 182, 183, 184, 186

2, 4, 6, 11, 14, 16, 22, 23, 26, 30, 32, 34, 38, 41, 43, 45, 47, 48, 58, 59, 63,
65, 70, 72, 76, 77, 84, 87, 88, 89, 97, 101, 105, 108, 109, 110, 114, 117, 119,
122, 123, 124, 134, 135, 142, 143, 144, 146, 155, 156, 158, 161, 164, 167, 173,
177, 178, 179, 181, 187

7, 8, 9, 24, 25, 28, 42, 44, 46, 61, 62, 64, 78, 79, 85, 96, 98, 103, 115, 116,
121, 133, 136, 139, 152, 154, 157, 171, 172, 175

[ 10, 15, 18, 29, 35, 37, 49, 54, 56, 69, 73, 75, 86, 93, 94, 106, 112, 113, 126,
131, 132, 145, 150, 151, 165, 169, 170, 185, 188, 189

Merging of classes of W resulting in scheme isomorphic to m7.1

0, 20, 40, 60, 80, 100, 120, 140, 160, 180

1, 3, 4, 12, 13, 14, 19, 21, 31, 32, 33, 36, 39, 41, 45, 51, 53, 55, 57, 59, 63,
66, 67, 71, 76, 82, 83, 84, 87, 92, 101, 102, 105, 109, 110, 111, 117, 118, 119,
123, 127, 129, 135, 137, 138, 141, 147, 148, 156, 159, 161, 163, 167, 168, 174,
177, 179, 181, 183, 186

2, 5, 6, 11, 16, 17, 22, 23, 26, 27, 30, 34, 38, 43, 47, 48, 50, 52, 58, 65, 68, 70,
72, 74, 77, 81, 88, 89, 90, 91, 95, 97, 99, 104, 107, 108, 114, 122, 124, 125,
128, 130, 134, 142, 143, 144, 146, 149, 153, 155, 158, 162, 164, 166, 173, 176,
178, 182, 184, 187

7, 8, 9, 24, 25, 28, 42, 44, 46, 61, 62, 64, 78, 79, 85, 96, 98, 103, 115, 116,
121, 133, 136, 139, 152, 154, 157, 171, 172, 175

10, 15, 18, 29, 35, 37, 49, 54, 56, 69, 73, 75, 86, 93, 94, 106, 112, 113, 126,
131, 132, 145, 150, 151, 165, 169, 170, 185, 188, 189
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Algebraic automorphism mapping m6.1 to m2.1

(0, 180, 80, 40, 160)(1, 174, 82, 55, 164, 16, 187, 88, 43, 159)
(2, 184, 76, 51, 156, 12, 179, 91, 47, 162)(3, 182, 87, 45, 153)
(4, 186, 84, 53, 161, 17, 173, 90, 38, 166)(5, 183, 77, 50, 158)
(6, 176, 83, 39, 168)(7, 172, 79, 44, 157)(8, 171, 85, 42, 154)
(9, 175, 78, 46, 152)(10, 185, 94, 49, 170)(11, 177, 81, 52, 167)
(13, 181, 89, 48, 155)(14, 178, 92, 41, 163)(15, 189, 86, 56, 169)
(18, 188, 93, 54, 165)(19, 66, 118, 111, 146, 34, 70, 124, 97, 141)
(20, 60, 120, 100, 140)(21, 71, 114, 104, 137)(22, 74, 119, 102, 148)
(23, 68, 122, 95, 147)(24, 64, 115, 98, 139)(25, 62, 121, 96, 136)
(26, 67, 117, 107, 144)(27, 57, 128, 105, 135)(28, 61, 116, 103, 133)
(29, 75, 131, 106, 151)(30, 65, 129, 109, 143)(31, 63, 125, 108, 134)
(32, 72, 123, 99, 149)(33, 58, 130, 101, 138)(35, 73, 126, 113, 150)
(36, 59, 127, 110, 142)(37, 69, 132, 112, 145)

Algebraic automorphism mapping m6.1 to m7.1

(0, 100, 180, 60)(1, 99, 178, 65, 16, 105, 183, 71)(2, 107, 186, 63)
(3, 95, 176, 70)(4, 108, 179, 58, 17, 102, 184, 67)(5, 104, 187, 57)
(6, 97, 182, 59)(7, 103, 172, 61)(8, 96, 175, 64)(9, 98, 171, 62)
(10, 112, 189, 73)(11, 110, 181, 66)(12, 101, 173, 74)(13, 111, 177, 68)
(14, 109, 174, 72)(15, 113, 185, 69)(18, 106, 188, 75)
(19, 81, 142, 155, 34, 87, 147, 168)(20, 80, 140, 160)
(21, 88, 135, 158, 30, 82, 149, 163)(22, 91, 138, 166, 31, 76, 144, 161)
(23, 89, 141, 153)(24, 85, 136, 152)(25, 78, 139, 154)
(26, 90, 148, 156)(27, 77, 143, 159)(28, 79, 133, 157)
(29, 93, 151, 165)(32, 92, 137, 164)(33, 84, 134, 162)(35, 94, 145, 169)
(36, 83, 146, 167)(37, 86, 150, 170)(38, 125, 51, 117)
(39, 124, 45, 122, 48, 118, 52, 127)(40, 120)(41, 114, 43, 128)
(42, 121, 46, 115)(44, 116)(47, 130, 53, 119)(49, 132, 56, 126)
(50, 129, 55, 123)(54, 131)
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C Data related to graph HoSi

Elements of Ω related to Proposition 3.5

0 ∅
1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 {{{1, 2}, {3, 5}, {4, 6}}, {{1, 3}, {2, 6}, {4, 5}}, {{1, 4}, {2, 3}, {5, 6}}, {{1, 5}, {2, 4}, {3, 6}}, {{1, 6}, {2, 5}, {3, 4}}}
9 {{{2, 3}, {4, 6}, {5, 7}}, {{2, 4}, {3, 7}, {5, 6}}, {{2, 5}, {3, 4}, {6, 7}}, {{2, 6}, {3, 5}, {4, 7}}, {{2, 7}, {3, 6}, {4, 5}}}
10 {{{1, 2}, {3, 5}, {4, 6}}, {{1, 3}, {2, 4}, {5, 6}}, {{1, 4}, {2, 5}, {3, 6}}, {{1, 5}, {2, 6}, {3, 4}}, {{1, 6}, {2, 3}, {4, 5}}}
11 {{{1, 3}, {4, 7}, {5, 6}}, {{1, 4}, {3, 5}, {6, 7}}, {{1, 5}, {3, 7}, {4, 6}}, {{1, 6}, {3, 4}, {5, 7}}, {{1, 7}, {3, 6}, {4, 5}}}
12 {{{1, 3}, {4, 6}, {5, 7}}, {{1, 4}, {3, 7}, {5, 6}}, {{1, 5}, {3, 4}, {6, 7}}, {{1, 6}, {3, 5}, {4, 7}}, {{1, 7}, {3, 6}, {4, 5}}}
13 {{{2, 3}, {4, 6}, {5, 7}}, {{2, 4}, {3, 5}, {6, 7}}, {{2, 5}, {3, 6}, {4, 7}}, {{2, 6}, {3, 7}, {4, 5}}, {{2, 7}, {3, 4}, {5, 6}}}
14 {{{1, 2}, {4, 7}, {5, 6}}, {{1, 4}, {2, 6}, {5, 7}}, {{1, 5}, {2, 4}, {6, 7}}, {{1, 6}, {2, 7}, {4, 5}}, {{1, 7}, {2, 5}, {4, 6}}}
15 {{{2, 3}, {4, 7}, {5, 6}}, {{2, 4}, {3, 5}, {6, 7}}, {{2, 5}, {3, 7}, {4, 6}}, {{2, 6}, {3, 4}, {5, 7}}, {{2, 7}, {3, 6}, {4, 5}}}
16 {{{1, 2}, {4, 7}, {5, 6}}, {{1, 4}, {2, 5}, {6, 7}}, {{1, 5}, {2, 7}, {4, 6}}, {{1, 6}, {2, 4}, {5, 7}}, {{1, 7}, {2, 6}, {4, 5}}}
17 {{{1, 3}, {4, 5}, {6, 7}}, {{1, 4}, {3, 7}, {5, 6}}, {{1, 5}, {3, 6}, {4, 7}}, {{1, 6}, {3, 4}, {5, 7}}, {{1, 7}, {3, 5}, {4, 6}}}
18 {{{1, 3}, {4, 6}, {5, 7}}, {{1, 4}, {3, 5}, {6, 7}}, {{1, 5}, {3, 6}, {4, 7}}, {{1, 6}, {3, 7}, {4, 5}}, {{1, 7}, {3, 4}, {5, 6}}}
19 {{{1, 2}, {3, 6}, {5, 7}}, {{1, 3}, {2, 7}, {5, 6}}, {{1, 5}, {2, 3}, {6, 7}}, {{1, 6}, {2, 5}, {3, 7}}, {{1, 7}, {2, 6}, {3, 5}}}
20 {{{1, 3}, {4, 7}, {5, 6}}, {{1, 4}, {3, 6}, {5, 7}}, {{1, 5}, {3, 4}, {6, 7}}, {{1, 6}, {3, 7}, {4, 5}}, {{1, 7}, {3, 5}, {4, 6}}}
21 {{{1, 2}, {3, 7}, {5, 6}}, {{1, 3}, {2, 6}, {5, 7}}, {{1, 5}, {2, 3}, {6, 7}}, {{1, 6}, {2, 7}, {3, 5}}, {{1, 7}, {2, 5}, {3, 6}}}
22 {{{1, 2}, {4, 6}, {5, 7}}, {{1, 4}, {2, 5}, {6, 7}}, {{1, 5}, {2, 6}, {4, 7}}, {{1, 6}, {2, 7}, {4, 5}}, {{1, 7}, {2, 4}, {5, 6}}}
23 {{{2, 3}, {4, 5}, {6, 7}}, {{2, 4}, {3, 7}, {5, 6}}, {{2, 5}, {3, 6}, {4, 7}}, {{2, 6}, {3, 4}, {5, 7}}, {{2, 7}, {3, 5}, {4, 6}}}
24 {{{1, 2}, {4, 5}, {6, 7}}, {{1, 4}, {2, 7}, {5, 6}}, {{1, 5}, {2, 6}, {4, 7}}, {{1, 6}, {2, 4}, {5, 7}}, {{1, 7}, {2, 5}, {4, 6}}}
25 {{{1, 2}, {3, 7}, {4, 6}}, {{1, 3}, {2, 4}, {6, 7}}, {{1, 4}, {2, 7}, {3, 6}}, {{1, 6}, {2, 3}, {4, 7}}, {{1, 7}, {2, 6}, {3, 4}}}
26 {{{1, 2}, {3, 6}, {5, 7}}, {{1, 3}, {2, 5}, {6, 7}}, {{1, 5}, {2, 6}, {3, 7}}, {{1, 6}, {2, 7}, {3, 5}}, {{1, 7}, {2, 3}, {5, 6}}}
27 {{{1, 2}, {4, 6}, {5, 7}}, {{1, 4}, {2, 7}, {5, 6}}, {{1, 5}, {2, 4}, {6, 7}}, {{1, 6}, {2, 5}, {4, 7}}, {{1, 7}, {2, 6}, {4, 5}}}
28 {{{2, 3}, {4, 7}, {5, 6}}, {{2, 4}, {3, 6}, {5, 7}}, {{2, 5}, {3, 4}, {6, 7}}, {{2, 6}, {3, 7}, {4, 5}}, {{2, 7}, {3, 5}, {4, 6}}}
29 {{{1, 2}, {3, 6}, {4, 7}}, {{1, 3}, {2, 7}, {4, 6}}, {{1, 4}, {2, 3}, {6, 7}}, {{1, 6}, {2, 4}, {3, 7}}, {{1, 7}, {2, 6}, {3, 4}}}
30 {{{1, 2}, {3, 7}, {5, 6}}, {{1, 3}, {2, 5}, {6, 7}}, {{1, 5}, {2, 7}, {3, 6}}, {{1, 6}, {2, 3}, {5, 7}}, {{1, 7}, {2, 6}, {3, 5}}}
31 {{{1, 2}, {3, 5}, {6, 7}}, {{1, 3}, {2, 7}, {5, 6}}, {{1, 5}, {2, 6}, {3, 7}}, {{1, 6}, {2, 3}, {5, 7}}, {{1, 7}, {2, 5}, {3, 6}}}
32 {{{1, 2}, {4, 5}, {6, 7}}, {{1, 4}, {2, 6}, {5, 7}}, {{1, 5}, {2, 7}, {4, 6}}, {{1, 6}, {2, 5}, {4, 7}}, {{1, 7}, {2, 4}, {5, 6}}}
33 {{{1, 2}, {3, 7}, {4, 5}}, {{1, 3}, {2, 5}, {4, 7}}, {{1, 4}, {2, 3}, {5, 7}}, {{1, 5}, {2, 7}, {3, 4}}, {{1, 7}, {2, 4}, {3, 5}}}
34 {{{1, 2}, {3, 7}, {4, 6}}, {{1, 3}, {2, 6}, {4, 7}}, {{1, 4}, {2, 3}, {6, 7}}, {{1, 6}, {2, 7}, {3, 4}}, {{1, 7}, {2, 4}, {3, 6}}}
35 {{{1, 2}, {3, 4}, {6, 7}}, {{1, 3}, {2, 7}, {4, 6}}, {{1, 4}, {2, 6}, {3, 7}}, {{1, 6}, {2, 3}, {4, 7}}, {{1, 7}, {2, 4}, {3, 6}}}
36 {{{1, 2}, {3, 7}, {4, 5}}, {{1, 3}, {2, 4}, {5, 7}}, {{1, 4}, {2, 7}, {3, 5}}, {{1, 5}, {2, 3}, {4, 7}}, {{1, 7}, {2, 5}, {3, 4}}}
37 {{{1, 2}, {3, 6}, {4, 7}}, {{1, 3}, {2, 4}, {6, 7}}, {{1, 4}, {2, 6}, {3, 7}}, {{1, 6}, {2, 7}, {3, 4}}, {{1, 7}, {2, 3}, {4, 6}}}
38 {{{1, 2}, {3, 5}, {6, 7}}, {{1, 3}, {2, 6}, {5, 7}}, {{1, 5}, {2, 7}, {3, 6}}, {{1, 6}, {2, 5}, {3, 7}}, {{1, 7}, {2, 3}, {5, 6}}}
39 {{{1, 2}, {3, 5}, {4, 7}}, {{1, 3}, {2, 7}, {4, 5}}, {{1, 4}, {2, 3}, {5, 7}}, {{1, 5}, {2, 4}, {3, 7}}, {{1, 7}, {2, 5}, {3, 4}}}
40 {{{1, 2}, {3, 5}, {4, 7}}, {{1, 3}, {2, 4}, {5, 7}}, {{1, 4}, {2, 5}, {3, 7}}, {{1, 5}, {2, 7}, {3, 4}}, {{1, 7}, {2, 3}, {4, 5}}}
41 {{{1, 2}, {3, 4}, {6, 7}}, {{1, 3}, {2, 6}, {4, 7}}, {{1, 4}, {2, 7}, {3, 6}}, {{1, 6}, {2, 4}, {3, 7}}, {{1, 7}, {2, 3}, {4, 6}}}
42 {{{1, 2}, {3, 6}, {4, 5}}, {{1, 3}, {2, 5}, {4, 6}}, {{1, 4}, {2, 3}, {5, 6}}, {{1, 5}, {2, 6}, {3, 4}}, {{1, 6}, {2, 4}, {3, 5}}}
43 {{{1, 2}, {3, 4}, {5, 7}}, {{1, 3}, {2, 7}, {4, 5}}, {{1, 4}, {2, 5}, {3, 7}}, {{1, 5}, {2, 3}, {4, 7}}, {{1, 7}, {2, 4}, {3, 5}}}
44 {{{1, 2}, {3, 6}, {4, 5}}, {{1, 3}, {2, 4}, {5, 6}}, {{1, 4}, {2, 6}, {3, 5}}, {{1, 5}, {2, 3}, {4, 6}}, {{1, 6}, {2, 5}, {3, 4}}}
45 {{{1, 2}, {3, 4}, {5, 6}}, {{1, 3}, {2, 6}, {4, 5}}, {{1, 4}, {2, 5}, {3, 6}}, {{1, 5}, {2, 3}, {4, 6}}, {{1, 6}, {2, 4}, {3, 5}}}
46 {{{1, 2}, {3, 4}, {5, 7}}, {{1, 3}, {2, 5}, {4, 7}}, {{1, 4}, {2, 7}, {3, 5}}, {{1, 5}, {2, 4}, {3, 7}}, {{1, 7}, {2, 3}, {4, 5}}}
47 {{{1, 2}, {3, 4}, {5, 6}}, {{1, 3}, {2, 5}, {4, 6}}, {{1, 4}, {2, 6}, {3, 5}}, {{1, 5}, {2, 4}, {3, 6}}, {{1, 6}, {2, 3}, {4, 5}}}
48 {{{2, 3}, {4, 5}, {6, 7}}, {{2, 4}, {3, 6}, {5, 7}}, {{2, 5}, {3, 7}, {4, 6}}, {{2, 6}, {3, 5}, {4, 7}}, {{2, 7}, {3, 4}, {5, 6}}}
49 {{{1, 3}, {4, 5}, {6, 7}}, {{1, 4}, {3, 6}, {5, 7}}, {{1, 5}, {3, 7}, {4, 6}}, {{1, 6}, {3, 5}, {4, 7}}, {{1, 7}, {3, 4}, {5, 6}}}
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List of elements of Ω (Section 11)

0 0 1 1
2 2 3 3
4 4 5 {{0, 5}, {1, 6}, {2, 7}, {3, 8}, {4, 9}}
6 {{0, 9}, {1, 5}, {2, 6}, {3, 7}, {4, 8}} 7 {{0, 8}, {1, 9}, {2, 5}, {3, 6}, {4, 7}}
8 {{0, 7}, {1, 8}, {2, 9}, {3, 5}, {4, 6}} 9 {{0, 6}, {1, 7}, {2, 8}, {3, 9}, {4, 5}}
10 {{0, 5}, {1, 9}, {2, 8}, {3, 7}, {4, 6}} 11 {{0, 9}, {1, 8}, {2, 7}, {3, 6}, {4, 5}}
12 {{0, 8}, {1, 7}, {2, 6}, {3, 5}, {4, 9}} 13 {{0, 7}, {1, 6}, {2, 5}, {3, 9}, {4, 8}}
14 {{0, 6}, {1, 5}, {2, 9}, {3, 8}, {4, 7}} 15 {{0, 5}, {1, 7}, {2, 9}, {3, 6}, {4, 8}}
16 {{0, 8}, {1, 5}, {2, 7}, {3, 9}, {4, 6}} 17 {{0, 6}, {1, 8}, {2, 5}, {3, 7}, {4, 9}}
18 {{0, 9}, {1, 6}, {2, 8}, {3, 5}, {4, 7}} 19 {{0, 7}, {1, 9}, {2, 6}, {3, 8}, {4, 5}}
20 {{0, 5}, {1, 8}, {2, 6}, {3, 9}, {4, 7}} 21 {{0, 8}, {1, 6}, {2, 9}, {3, 7}, {4, 5}}
22 {{0, 6}, {1, 9}, {2, 7}, {3, 5}, {4, 8}} 23 {{0, 9}, {1, 7}, {2, 5}, {3, 8}, {4, 6}}
24 {{0, 7}, {1, 5}, {2, 8}, {3, 6}, {4, 9}} 25 (0, 5)
26 (1, 5) 27 (2, 5)
28 (3, 5) 29 (4, 5)
30 (0, 6) 31 (1, 6)
32 (2, 6) 33 (3, 6)
34 (4, 6) 35 (0, 7)
36 (1, 7) 37 (2, 7)
38 (3, 7) 39 (4, 7)
40 (0, 8) 41 (1, 8)
42 (2, 8) 43 (3, 8)
44 (4, 8) 45 (0, 9)
46 (1, 9) 47 (2, 9)
48 (3, 9) 49 (4, 9)

List of elements of Ω′

0 0 1 1 2 4 3 3
4 2 5 7 6 19 7 5
8 11 9 6 10 1 6 11 8
12 23 13 21 14 27 15 18
16 10 17 9 18 13 19 17
20 22 21 20 22 26 23 12
24 37 25 24 26 31 27 14
28 15 29 33 30 35 31 25
32 38 33 28 34 34 35 32
36 30 37 36 38 29 39 39
40 {0,1,2,3} 41 {4,5,6,7} 42 {16,17,18,19} 43 {8,9,10,11}
44 {20,21,22,23} 45 {24,25,26,27} 46 {12,13,14,15} 47 {36,37,38,39}
48 {28,29,30,31} 49 {32,33,34,35}
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