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1 Introduction

In this paper we describe a family of imprimitive rank 5 association schemes on
40 points which are called Higmanian (they belong to class II association schemes
with 4 classes according to the classification introduced by D. G. Higman in [9]).
The first example of such schemes was given by Y. Chang and T. Huang in [2] based
on a previous construction by A. and M. Deza [3].

A scheme M considered in [2] is presented in evident form via basis matrices
which are described in a block form, intersection numbers and eigenmatrices are
computed, but there is no information about the automorphism group Aut(M). It
is also shown that one of the basis graphs of M is the point graph of a generalized
quadrangle Q(4, 3). In the course of computer algebra experimentation using total
graph coherent configuration with two fibers, we constructed such configuration
starting from the triangular graph T (5) and described all mergings of it which
provide association schemes. One of the resulting fusion schemes was isomorphic to
the scheme M (this was first established with the aid of a computer, though later
on we obtained a computer-free proof). We also found the group G = Aut(M) to be
a certain transitive permutation group of degree 40 and order 1920. Playing with
this group we have managed to establish a few nice properties of M and related
structures. In particular, we discovered a new partial linear space on 40 points and
40 lines of size 4 which in a sense is a “geometric generator” of all scheme M.

Understanding of these properties of M allowed us to elaborate a nice, simple
though very efficient, algorithmic approach to the constructive enumeration of all
association schemes sharing with M the same tensor of structure constants (alge-
braically isomorphic in our terminology). This approach is based on a computer
inspection of the catalogue of all 28 strongly regular graphs with the parameters
(40, 12, 2, 4). This catalogue belongs to ES and is available from his home page.

Finally we proved that there exists precisely 15 association schemes, algebraically
isomorphic to M. Only one of them, namely M is Schurian while all the remaining
schemes have intransitive automorphism group. Four of the discovered schemes,
including M, are geometric in the sense which was explained above.
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Our results are based on use of a few computer algebra packages, namely COCO
[6], GAP [17], GRAPE [18], and nauty [15], although we finally managed to provide
computer-free proofs for the most important (and beautiful in our eyes) results.

2 Preliminaries

Association schemes
A coherent algebra is a matrix algebra which is closed with respect to SH (el-

ementwise) multiplication and transposition, and contains the matrices I and J .
The rank of a coherent algebra is its dimension. A coherent configuration is a rela-
tional reformulation of coherent algebra. That is, a coherent configuration can be
defined as a set of relations such that their adjacency matrices form a basis of a
coherent algebra. We refer to [5], [8], [13] for more information about coherent con-
figurations (algebras) and association schemes. An association scheme is a coherent
configuration for which all basis relations are regular.

Generalized quadrangles of order 3
A generalized quadrangle is a partial geometry PG(s, t, 1), i.e., an incidence

structure for which every block has s + 1 points, every point lies on t + 1 blocks,
two blocks intersect in at most one point, and for every block b and every point P
not in b, there is exactly one block c such that P is in c, and b intersects c.

A generalized quadrangle of order 3 is PG(3, 3, 1), denoted by GQ(3). A GQ(3)
has 40 points and 40 blocks.

In [16] it is shown that up to isomorphism there are two generalized quadrangles
of order 3, W (3) and Q(4, 3).

3 Imprimitive association schemes of low rank

The smallest rank for which non-trivial imprimitive association schemes exist is
equal to 4. The paper [20] provides a nice survey of various classes of such schemes.

Rank 5 imprimitive schemes have been investigated with less attention. A gen-
eral program was outlined by Higman in [9].

Let E be an equivalence relation in an association scheme M (closed subset in
Zieschang’s terms, parabolic in terms of Higman). Then rank(E) is the rank of
the association scheme induced by M on one (any) of the equivalence classes of E,
while corank(E) is the rank of the quotient association scheme M/E.

It is easy to see that rank(E)+ corank(E) ≤ rank(M)+ 1, with equality if and
only if M is the wreath product of E and M/E.

This makes it reasonable to consider the following classes (due to Higman) of
rank 5 imprimitive symmetric association schemes with a parabolic E which are
not decomposable into a wreath product:
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class of M I II III
rank of E 3 2 2
corank of E 2 3 2

In [9] examples are given, which show that classes I and II may have non-trivial
intersection, while class III is distinct from classes I and II. Class I was investigated
extensively by Higman.

Let E have n equivalence classes of size v, and suppose that one of two associate
classes of M/E is a strongly regular graph with the parameters (n, k, l, λ, µ). Then
the whole scheme M has nv points and valencies k0 = 1, k1 = v − 1, k2 = kS,
k3 = (v − S)k, k4 = lv for a suitable parameter S. Corresponding intersection
matrices and character tables are provided in [9], as well as for a particular case,
which corresponds to the intersection of classes I and II. Higman refers to examples
of distance regular imprimitive graphs of diameter 4 (see, e.g. [1]), briefly discussing
when these graphs also belong to class I.

We are interested in rank 5 schemes which belong properly to class II. Such
an example was provided in [2]. It has 40 points and corresponds to the following
Higman parameters: n = 10, k = 6, l = 3, λ = 3, µ = 4 (that is the complement of
the Petersen graph), v = 4, S = 2, thus resulting in four classes with the valencies
3, 12, 12, 12.

In this paper we provide detailed investigation of this example and classify all
association schemes which are algebraically isomorphic to it.

4 Starting point: Total configuration of T (5).

Let Σ = (V,E) be a graph. The total graph T (Σ) is the graph with the vertex
set V ∪ E, two such vertices in T (Σ) are adjacent if and only if they are adjacent
or incident in Σ (here edges of Σ are incident if they have a joint vertex).

A coherent closure of T (Σ) will be called a total coherent configuration of Σ.
We are interested in the total coherent configuration T(m) of the triangular

graph T (m) (recall that T (m) is the line graph L(Km) of the complete graph Km).
Clearly, T(m) is a coherent configuration with 2 fibers on m(m−1)2

2 points.
The first non-trivial case corresponds to m = 4. Here (according to COCO) we

get a coherent configuration of rank 18 which has a few Schurian mergings of rank
3 and 4. All these mergings are quite predictable.

The first surprises appear in the case m = 5. Here we get a coherent configura-
tion of rank 24 with 2 fibers of size 10 and 30.

COCO returns 9 mergings, all Schurian, among them 4 association schemes of
rank 5 and one primitive strongly regular graph with the parameters (40, 12, 2, 4)
and rank 3 automorphism group of order 51840.

Two of the above association schemes with 4 classes have valencies 1, 3, 12, 12,
12. With the aid of GAP we prove that they are both isomorphic to the Higmanian
association scheme from [2].
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For these schemes one of the classes of valency 12 provides the above rank 3
graph, which should be the point graph of a generalized quadrangle GQ(3). Ac-
cording to [2], this graph is the polar graph O5(3), in other words the point graph
of Q(4, 3).

As was mentioned, the story of our association scheme with 4 classes goes back
to the paper [3], in which the ridge graph Γ5 was defined. (Note that one more
description of Γ5 with correction of some misprints in [3] appears in [4].) This ridge
graph has valency 15 and is easily described via the union of one relation of valency
12 with the relation of valency 3 in the Higmanian association scheme.

5 The group of order 1920 and its actions

One of the main paradigms in our vision of computer algebra experimentation
in algebraic combinatorics may be formulated as follows:

In order to understand properly a combinatorial object O in consideration, de-
scribe its automorphism group G = Aut(O) and reveal all actions of G which should
be naturally attributed to O. Sometimes it may be very helpful to start from a cer-
tain auxiliary structure ∆ and to define the action of G on this structure.

In this text we are following the formulated paradigm.
Let us consider graph ∆ = 5 ◦K2 as follows:
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The automorphism group Aut(∆) is isomorphic to the wreath product S5oS2 of order
5! · 25 = 3840. We refer to [5] and [13], where the operation of the wreath product
of groups is treated in notation and style consistent with our current presentation.

The group Aut(∆) clearly contains odd permutations. This is why the group
G = (S5 o S2)pos which consists of all even permutations from Aut(∆) has index 2
in Aut(∆). It is, in a sense, our master group in this paper.

For the sake of convenience (especially using COCO) in what follows we will
consider G defined with the aid of the following generators:

G =< (0, 6, 4, 1, 7, 5)(8, 9), (0, 7, 1, 6)(2, 5, 8, 3, 4, 9) > .

We now wish to describe in terms of ∆ the action of G on the points of a new model
of Q(4, 3) (to be presented in Section 6), as well as on the points of the Higmanian
association scheme M. The fact that G is indeed isomorphic to the group Aut(M)
can be confirmed by GAP. GAP returns also the description of a point stabilizer in
this transitive action, namely a group H1 of order 48 isomorphic to D6 × E4, that
is the direct product of dihedral group D6 of order 12 and the elementary abelian
group of order 4.
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We get the following set of generators for H1:

H1 =
〈

(6, 7)(8, 9), (0, 1)(2, 3)(4, 5)(8, 9),
(6, 8)(7, 9), (0, 2, 4)(1, 3, 5), (2, 4)(3, 5)

〉
.

In fact, COCO requires to interpret H1 as the intersection of the group G with the
automorphism group of a suitable structure (or string), say S(1), which is defined
in terms of auxiliary structure ∆. Then the required set Ω of points of the model
for M will be obtained via induced action of G on the images of S(1).

Let us take as the role of S(1) the following hexagon:
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or, in a more beautiful form:
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Clearly our group H1 stabilizes S(1). On the other hand stabilizer of S(1) in Aut(∆)
has order 12 · 8 = 96 and contains odd permutations, for example (6, 7). Therefore
Aut(S(1))∩G = H1. Define Ω = S(1)G

and obtain that |Ω| = [G : H1] = 1920
48 = 40.

(List of elements of Ω is attached in archive file which may be provided by authors.)
It is easy to see also that the complementary graph ∆ = 5 ◦K5 has

(
5
2

)
4 =

40 inscribed subgraphs which are isomorphic to the hexagon S(1). Therefore the
required set Ω may also be described purely combinatorially.

We use COCO and get a Schurian association scheme (Ω, 2− orb(G, Ω)). It has
rank 5 with classes of valency 12, 12, 12, 3. The group G is its full automorphism
group. (Labeling of classes is produced by COCO.) We also get a description of
structure constants and of all fusion schemes. GAP confirms that (Ω, 2−orb(G, Ω))
is isomorphic to the original Higmanian association scheme. Thus from now we
simply write

M = (Ω, 2− orb(G, Ω)).

Let us describe this scheme in a more friendly form providing computer-free proofs
of some of its properties, when this seems to be reasonable and productive.

Therefore from now we attribute the label S
(1)
0 to the above copy of the hexagon

(for brevity, four isolated points are omitted), and following COCO, depict a few
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other requested copies of structure S(1):
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With the aid of these representatives of Ω we define basis relations on M as follows:
R0, R1, R2, R3, R4, where Ri = (S(1)

0 , S
(1)
ji

)G, ji = 0, 1, 2, 3, 7 respectively.

We now give more formal description of the relations in which we regard S
(0)
0

as the reference copy. Then black vertices and bold edges on other hexagons reveal
their intersection with the reference copy. Using the methodology of subsequent
splitting of relations (see [5]) we may easily distinguish basis relations of M via two
invariants of pairs of hexagons:

Ri R0 R1 R2 R3 R4

Nr. of joint points 6 4 2 4 6
Nr. of joint edges 6 0 0 2 2

It is immediately clear from the description that E = R0 ∪ R4 is an equivalence
relation with 10 classes of size 4 parametrized by 2-element subsets of the edges
of ∆. Thus we may define quotient graphs for all the remaining basis graphs Γ1,
Γ2, Γ3. Simple combinatorial arguments show that Γ2/E is isomorphic to the Pe-
tersen graph, while Γ1/E and Γ3/E are isomorphic to its complement. Γ1 is the
point graph of Q(4, 3) (a computer-free proof of this result will be discussed in next
section).

From this information it follows that Γ2 is the wreath product graph.
COCO also returns the following complete list of mergings:
M1 = (Ω, {R0, R1 ∪R3, R2, R4}),
M2 = (Ω, {R0, R1 ∪R2 ∪R3, R4}),
M3 = (Ω, {R0, R1, R2 ∪R3 ∪R4}).
Analyzing this list we detect that the only subalgebra of the adjacency algebra A

of M, which contains the basis matrix A3 is A itself. In other words, A is generated
by A3. We denote this fact as A =<< A3 >>, where << A3 >> stands for the
coherent closure of A3 (see references in section 2).

Summing up all detected information we obtain:

Proposition 5.1. a) M = (Ω, 2 − orb(G, Ω)) is an association scheme of rank 5
with valencies 1, 12, 12, 12, 3;

b) Aut(M) = G;

c) E = R0 ∪R4 is the unique closed subset in M;
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d) The quotient scheme M/E is isomorphic to the rank 3 association scheme J(5, 2);

e) M1
∼= J(5, 2) oW (K4) (W (K4) is coherent closure of K4);

f) M3 is 2-class association scheme corresponding to Q(4, 3);

g) M belongs to class II of association schemes of rank 5 in notation of Higman;

h) Up to isomorphism, M is the scheme which was introduced in [2].

In what follows we will call the basis graph Γ3 of M the classical Higmanian
graph of valency 12 on 40 points.

We want to give to this graph a more transparent description, because in a sense
description of Γ3 implies description of the whole scheme M. For this purpose we
will use methodology of so-called reaction graphs, see e.g. [14], [12], [11].

Let S ∈ Ω be an arbitrary hexagon, described as follows:
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Let us consider the following transformation of S:

• select a pair of opposite edges;

• put on each edge one of the vertices g and h;

• get auxiliary graph S′ with 8 vertices;
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• get a homeomorphic image S′′ of S′ contracting vertices f and c.
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We will call reaction on S an operation of transformation from S to S′′. Clearly
such reaction can be arranged by 3 · 4 = 12 different opportunities.

We now define the reaction graph Γ with the vertex set Ω′. Here Ω′ is the set of
all hexagons which may be obtained in a few reaction steps from a prescribed copy
S of hexagon, say from S

(1)
0 . Two hexagons from Ω′ are joined by an edge if the

second is obtained from the first via a reaction as above. The following lemma may
be proved with the aid of (slightly routine) hand or computer considerations.

Lemma 5.2. a) For each S ∈ Ω, S′′ ∈ Ω;

b) Ω′ = Ω;

c) Γ is connected graph of valency 12;

d) Γ has diameter 2 and girth 3;

e) the intersection diagram of Γ looks as

1 12 12
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f) Γ is isomorphic to the Higmanian graph Γ3 as above;

g) Aut(Γ) = G;

h) Γ is locally 2 ◦ P6, the disjoint union of two prisms P6 with 6 vertices.
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In what follows we will exploit various consequences of this lemma. In particular,
knowledge of the intersection diagram allows us to calculate for A = A(Γ) its square
A2 and cube A3 and to describe the multiplication table in the adjacency algebra
A.

Another approach to the investigation of M concerns the consideration of certain
incidence structures. For this purpose we need to get more information about certain
subgroups of G.

Using GAP we describe all (up to conjugacy) subgroups of G. Among them we
reveal 14 conjugacy classes of subgroups of order 48. One of these classes with the
representative H1 was already submitted earlier. This is stabilizer of a point in the
transitive action (G, Ω).

Using GAP, we describe all orbits of (G, Ω) on the set
{

Ω
4

}
of the 4-element

subsets of Ω. It turns out that there are 94 such orbits with lengths from 10 (it
corresponds to spread, that is graph Γ4) to 1920. Two of these orbits are of a special
interest, because they have the desired length 40. In other words, the stabilizer of
a corresponding 4-subset is a subgroup of order 48 in G.

Let us now describe these selected subgroups. Subgroup H2 as an abstract group
is isomorphic to the group GL(2, 3). It can be defined as

H2 =

〈(2, 3)(4, 5)(6, 7)(8, 9), (4, 6, 8)(5, 7, 9),
(2, 8, 3, 9)(4, 6, 5, 7), (0, 1)(4, 5)(6, 9)(7, 8)
(2, 4, 3, 5)(6, 8, 7, 9)

〉
.

Let us now consider the following structure M :

M =
{
{2, 4, 7}, {2, 6, 9}, {2, 5, 8}, {4, 6, 8},
{3, 5, 6}, {3, 7, 8}, {3, 4, 9}, {5, 7, 9}

}
.

It is easy to see that M is a partial linear space with the point set {2, 3, 4, 5, 6, 7, 8, 9}
(in fact this is a copy of a classical configuration 83.) Also we can check that the
stabilizer of the set M in the group G coincides with the group H2.

We also introduce the group H3, which as an abstract group is isomorphic to
S4 × S2. Namely

H3 =

〈(2, 3)(4, 5)(6, 7)(8, 9), (4, 6, 8)(5, 7, 9),
(2, 4)(3, 5)(6, 8)(7, 9), (6, 8)(7, 9),
(2, 6)(3, 7)(4, 8)(5, 9)

〉
.

Again we can easily check that H3 is the automorphism group of the cube Q3 below.
Moreover this cube is an inscribed subgraph of ∆, and the stabilizer of Q3 in G
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coincides exactly with H3.
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Groups H1, H2 and H3 play a significant role in the next section.

6 Two partial linear spaces on 40 points

First, we will discuss our new model for the generalized quadrangle Q(4, 3).
Let us consider an incidence structure I1 = (P,L1), where P = Ω is the set

of 40 inscribed hexagons of ∆, as it is defined in the previous section. We define
L1 = MG as the orbit of a copy of a partial linear space M under the action of G.

Incidence is defined in the following manner: Each copy Mi ∈ L1 contains 4 pairs
of opposite triangles. A hexagon from P is matched to a pair of opposite triangles,
if they both have the same 6 vertices, and no shared edges (so in a sense, their
union, together with the edges from the original ∆, is the complete graph). For
example, a pair of opposite triangles of M : {2, 4, 7}, {3, 5, 6} matches the hexagon
(2, 5, 7, 3, 4, 6). A hexagon from P is incident to Mi if it matches a pair of opposite
triangles of Mi.

Proposition 6.1. a) The incidence structure I1 has v = 40 points, b = 40 lines,
each line has k = 4 points and each point is on r = 4 lines;

b) I1 is a partial linear space;

c) I1 is a model of a generalized quadrangle GQ(3);

d) I1 is isomorphic to Q(4, 3);

e) Aut(I1) has order 51840.

We refer to [22] for a proof of this proposition.
Now we intend to consider a model for another incidence structure formed by

vertices and 4-cliques of Γ3.
We have the same point set P = Ω. The set of lines L2 is the orbit QG

3 of a
selected copy of Q3 under the action of group G.

Let us look at this copy from a different point of view. Namely, consider the
following diagram of the same Q3:

10



◦

◦

◦

◦

◦

◦

◦

◦2

3

4

5
6

7

8

9...........
...........
...........
...........
...........
...........
...........
...........
...........


...........
...........
...........
...........
...........
...........
...........
...........
......................................................................................................................................................................................................................................................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

..........................................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........


...........
...........
...........
...........
...........
...........
...........
...........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........


...........
...........
...........
...........
...........
...........
...........
...........
..........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....................................................................................................................................................................................................................................................................................................................................................................................................

It shows a hexagon from Ω, (2, 5, 6, 3, 4, 7) inscribed into this copy of Q3.
Formal definition: remove a pair of antipodal vertices {8, 9} from Q3 and con-

sider the subgraph induced by the remaining vertices. This is a copy of hexagon.
Note that this hexagon is the automorphic subgraph of Q3 (see [10]), that is the
stabilizer of the hexagon in Aut(Q3) is equal to the full automorphism group D6

(of order 12) of the hexagon.
Clearly for a fixed copy of Q3 the incidence just introduced may be established

in precisely 4 different ways, that is removing different antipodal pairs of vertices.

Proposition 6.2. a) v = b = 40, k = r = 4;

b) I2 is a partial linear space;

c) Γ3 is the point graph of I2;

d) I2 is uniquely reconstructed from Γ3;

e) Aut(Γ3) = Aut(I2) = G;

f) for each line l ∈ L there are precisely:

• 12 points P 6∈ l through which there are 0 lines intersecting l;
• 12 points P 6∈ l through which there are 1 lines intersecting l;
• 12 points P 6∈ l through which there are 2 lines intersecting l;

7 Search for all schemes algebraically isomorphic
to M

The problem posed in the title of the section was solved with the aid of a
computer.

The starting point was a catalogue of all strongly regular graphs with the pa-
rameters (40, 12, 2, 4), which was produced by ES, see [19]. There are precisely
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28 non-isomorphic such graphs. Note that significant portion of those graphs was
already described by W. H. Haemers in [7]. Haemers was using methodology devel-
oped in Moscow by V. L. Arlazarov et al (see [21]).

The computer search was organized as follows:

• Consider each strongly regular graph Γ from the catalogue (Γ has valency 27).

• Describe all orbits of cliques of size 8 in Γ.

• Use detected cliques as possible “hyperedges” in a wreath product W =
Petersen wr K4 (this is a regular graph of valency 15). Classify all (up
to automorphisms from Aut(Γ)) possible embeddings of W into Γ.

• Consider difference Γ\W , which is a regular graph of valency 12 (candidate to
be an analogue of classical Higmanian graph). Find coherent closure of Γ\W .
Disregard result if it has rank larger than 5.

• In case when coherent closure has rank 5 check if it is algebraically isomorphic
to the Higmanian scheme M.

This algorithm was programmed in GAP with the aid of GRAPE.
In what follows we are using labeling of strongly regular graphs as in [19].
It turns out that precisely first 11 graphs have cliques of size 8. All these graphs

admit at least one Higmanian association scheme. Altogether we get 15 schemes.

8 Survey of computer results

The main results of computation are presented in table form below. Here we
show for each graph order of its automorphism group and lengths of its orbits,
similar information is provided for automorphism group of each association scheme.

Note that now the classical Higmanian association scheme coincides with the
scheme M6.1.

We provide also information about the number of 4-cliques in each of 15 Higma-
nian graphs. An interesting correlation appears with the property to be geometric.
Only those (4) Higmanian graphs are the point graphs of a suitable partial linear
space, which admit (like classical Higmanian graph) precisely 40 cliques of size 4.
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Γi Mi |Aut(Γ)| |orb(Aut(Γ))| |Aut(M)| |orb(Aut(M))| Geometric Nr. of 4-cliques
Γ1 1.1 48 4, 123 48 same no 32
Γ2 2.1 384 16, 24 384 same no 8
Γ2 2.2 384 16, 24 192 same yes 40
Γ3 3.1 8 28, 42, 82 8 same no 20
Γ4 4.1 12 1, 33, 63, 12 12 same no 24
Γ5 5.1 64 8, 162 64 same yes 40
Γ5 5.2 64 8, 162 32 42, 82, 16 no 24
Γ6 6.1 51840 40 1920 same yes 40
Γ7 7.1 192 4, 12, 24 192 same no 24
Γ7 7.2 192 4, 12, 24 32 42, 82, 16 yes 40
Γ8 8.1 8 28, 42, 82 8 same no 28
Γ9 9.1 48 2, 4, 6, 12, 16 16 24, 44, 16 no 32
Γ10 10.1 16 42, 84 16 same no 32
Γ10 10.2 16 42, 84 8 48, 8 no 32
Γ11 11.1 144 4, 12, 24 48 same no 32
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