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Summary

In this paper we introduce the notion of total graph coherent configuration,
and use computer tools to investigate it for two classes of strongly regular
graphs – triangular graphs T (n) and lattice square graphs L2(n). For T (n),
we show that its total graph coherent configuration has exceptional mergings
only in the cases n = 5 and n = 7.

1 Introduction

The notion of a total graph coherent configuration was introduced and is used
in [KliZ], where an imprimitive rank 5 association scheme on 40 points was
constructed as a merging of relations in the total graph configuration of the
triangular graph T (5).

In this paper we investigate systematically total graph coherent configu-
rations of two infinite series of classical strongly regular graphs.

Section 2 contains all preliminaries which make this presentation mostly
self-contained. In Section 3 we consider triangular graphs T (n) and show that
in corresponding total graph coherent configuration T (n) for every n ≥ 6 there
are two merging association schemes with two and three classes. Besides this
there are sporadic mergings for the cases n = 5, 7. Using a computer we prove
that these mergings expire all possible merging association schemes in T (n).
We also show that T (n) coincides for all n > 4 with the Schurian coherent
configuration defined by the automorphism group of the total graph of T (n)
(this group is actually Sn, in action on the edges and paths of length 2 of
Kn). In Section 4, similar results are presented for the total graph coherent
configuration defined by the lattice square graphs L2(n).
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Our results provide an example of successful amalgamation of essential
computer algebra experimentation with a subsequent theoretical analysis and
generalization. An important feature of presented approach is that the struc-
ture constants for both series of coherent configurations appear as polynomials
in variable n. In Section 5 we present a detailed outline of the used algorithm
for the search of mergings which was implemented in GAP.

Finally, in Section 6 we discuss further possibilities for the investigation
of the introduced class of coherent configurations. Those include relations to
the famous graph isomorphism problem and potential applications of Gröbner
bases.

2 Preliminaries

2.1 Coherent configurations and association schemes

2.1.1 Axioms

Let X = [1, n], R = {R1, . . . , Rr} a collection of binary relations on X (subsets
of X2) such that:

CC1 Ri ∩ Rj = ∅ for 1 ≤ i 6= j ≤ r;

CC2

r⋃

i=1

Ri = X2;

CC3 ∀i ∈ [1, r]∃i′ ∈ [1, r]Rt
i = Ri′ , where Rt

i = {(y, x)|(x, y) ∈ Ri};

CC4 ∃I ′ ⊆ [1, r]
⋃

i∈I′

Ri = ∆, where ∆ = {(x, x)|x ∈ X};

CC5 ∀i, j, k ∈ [1, r]∀(x, y) ∈ Rk|{z ∈ X |(x, z) ∈ Ri ∧ (z, y) ∈ Rj}| = pk
ij ,

then M = (X, R) is called a coherent configuration. The relations in R are
called basis relations of M. The parameters pk

ij are the structure constants

of the configuration. The graphs Γi = (X, Ri) are called basis graphs of the
coherent configuration.

See [Hig70] for original definitions.
Let (G, Ω) be a permutation group. G acts naturally on Ω2 by (x, y)g =

(xg, yg). Following H. Wielandt in [Wie69], the orbits of this action, (G, Ω2)
are called the 2-orbits of (G, Ω), denoted by 2 − orb(G, Ω).

For every permutation group (G, Ω), (Ω, 2− orb(G, Ω)) is a coherent con-
figuration. Conversely, if the set of relations of a coherent configuration, M,
coincides with 2−orb(G, Ω) for a suitable group G, then M is called a Schurian

coherent configuration.
A coherent configuration which has ∆ = {(x, x)|x ∈ X} as one of its basis

relations is called an association scheme. In this case, all basis relations except
for ∆ are called classes.
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A fusion configuration (or a merging) of a coherent configuration M =
(X, R) is a coherent configuration M′ = (X, S) on the same set such that
each basis relation Si of M

′ is a union of basis relations of M.
Coherent configurations can be alternatively described in matrix language.

The matrix A(R) of a relation R on X is a (0, 1)-matrix A(R) = (aij) of
dimension |X | × |X | such that aij = 1 iff (i, j) ∈ R. If R = {R1, . . . , Rr}
are basis relations of a coherent configuration then their adjacency matrices
{Ai = A(Ri)}r

i=1 form a basis of a matrix algebra which is closed under
Schur-Hadamard (element wise) product.

This leads to equivalent formulation of axioms of coherent configuration:
Let W ⊆ C

n×n be a matrix algebra of square matrices of order n over the
complex field, such that

CA1 W as a linear space over C has some basis, A1, A2, . . . , Ar, consisting of
(0, 1)-matrices;

CA2
r∑

i=1

Ai = Jn, where Jn is the square matrix of order n all entries of which

are equal to 1;
CA3 ∀i ∈ [1, r]∃i′ ∈ [1, r]At

i = Ai′ ;
CA4 I ∈ W (I denotes the identity matrix),

then W is called a coherent algebra of rank r and order n with the standard

basis C = {A1, A2, . . . , Ar}. We write W =< A1, · · · , Ar >.
The notion corresponding to a fusion scheme in this notation is a coherent

subalgebra, that is a subalgebra which is also a coherent algebra.

2.1.2 Weisfeiler-Leman closure

Using matrix notation, it is easy to see that the intersection of coherent al-
gebras is a coherent algebra, and that each square matrix is contained in
some coherent algebra (since Mn(C) is coherent). Therefore, we can define
the coherent closure of a matrix A, denoted << A >> as the smallest coher-
ent algebra containing this matrix (or in other words, the intersection of all
coherent algebras containing it).

An efficient algorithm for computing << A >> was suggested by Weis-
feiler and Leman ([Wei76]) and is frequently called the WL-stabilization of
the matrix A.

2.1.3 Wreath product

If M1 = (X1, {R0, R1, . . . , Rr}) and M2 = (X2, {S0, S1, . . . , Sl}) are associa-
tion schemes (R0 and S0 are the reflexive relations), then the wreath product
of M1 with M2 is defined as M1 ≀ M2 = (Y = X1 × X2, {T0, T1, . . . , Tr+l})
where T0 is the identity relation on Y , Ti = {((a, b), (c, d))|(a, c) ∈ Ri} for all
1 ≤ i ≤ r, and Tr+i = {((a, b), (a, c))|(b, c) ∈ Si} for all 1 ≤ i ≤ l.
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The wreath product of association schemes of ranks r and l is an associa-
tion scheme of rank r + l − 1.

2.2 Total Configuration

Let Γ = (V, E) be a graph. The total graph T (Γ ) is the graph with the vertex
set V ∪ E, two such vertices in T (Γ ) are adjacent if and only if they are
adjacent or incident in Γ (here edges of Γ are incident if they have a joint
vertex).

A coherent closure of T (Γ ) will be called a total coherent configuration of
Γ .

The Schurian total coherent configuration of a graph Γ is
(X, 2 − Orb(Aut(T (Γ ))) where X is the set of vertices of T (Γ ).

The Schurian total configuration has the total configuration as a fusion
configuration. Indeed, since an automorphism of T (Γ ) maps edges of T (Γ )
to edges, any 2-orbit of Aut(T (Γ )) either contains edges only, or does not
contain edges at all.

2.3 Computational tools

2.3.1 COCO

COCO is a set of programs for dealing with coherent configurations. The
current version was developed during the years 1990-1992 in Moscow, USSR,
mainly by Faradžev and Klin [FarKM94, FarK91].

COCO can be used to construct a coherent configuration (Ω, 2−orb(G, Ω),
for some prescribed permutation group (G, Ω), as well as to calculate structure
constants, association schemes which are mergings of the coherent configura-
tion, and automorphism groups of those.

COCO was originally written for DOS, and the version currently in use
is the UNIX port by A.E. Brouwer, available from Brouwer’s home page
[Brouwer].

2.3.2 WL-stabilization

Two implementations of the Weisfeiler-Leman stabilization [Wei76] are avail-
able, under the name stabil [BCKP97] and stabcol [BabBL96]. The two im-
plementations differ slightly in memory usage and run time, but both are
adequate for the coherent configurations used in this article.

2.3.3 GAP

GAP [GAP], [Sch95], an acronym for “Groups, Algorithms and Program-
ming”, is a system for computation in discrete abstract algebra. The system is
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extensible in the sense that it supports easy addition of extensions (packages,
in GAP nomenclature), that are written in the GAP programming language
which can extend the abilities of the GAP system.

Within GAP framework, COCO-II (a reimplementation of COCO func-
tionality as a GAP package, currently in development by S. Reichard et al) will
be used. COCO-II improves on original COCO by adding functionality such
as WL-stabilization, as well as using algorithms developed since the release of
COCO.

The author modified some COCO-II functions to handle polynomial struc-
ture constants, instead of the usual numeric constants, and those functions
are used to handle the general case in this paper.

3 Total configuration of triangular graph

3.1 Definition and basic properties

We are interested in the total coherent configuration T (n) of the triangular
graph T (n) (recall that T (n) is the line graph L(Kn) of the complete graph
Kn).

In more detail, the total graph T(n) is the total graph of the triangular
graph T (n). The vertices of T(n) are the edges and the paths of length 2 of
Kn, and two vertices (of T(n)) are joined if they are both edges of Kn that
have a point (of Kn) in common, or else they have an edge of Kn in common.

T(n) has n(n−1)2

2 vertices. T (n) is the coherent closure of T(n).
To investigate T (n) we will first consider the Schurian total coherent con-

figuration S(n), and later show that T (n) = S(n).
Let Ω be the set of vertices of T(n). In other words,

Ω = {{a, b}|a 6= b ∈ [1, n]}∪{{{a, b}, {a, c}}|a, b, c ∈ [1, n], a 6= b, a 6= c, b 6= c}.

Let G be the automorphism group of T(n); it is well known that G is the
permutation group (Sn, Ω) (with the natural action of Sn on Ω) for n > 4.
Then, S(n) = (Ω, 2 − orb(G)) is the Schurian total coherent configuration of
the triangular graph.

For n ≥ 6, S(n) has 2 fibres and 25 relations as follows: (for the sake of
brevity, we will list a standard compact description for each relation).

Two reflexive relations:
R0 = ({a, b}, {a, b}),
R1 = ({{a, b}, {a, c}}, {{a, b}, {a, c}}),
Two relations within first fibre:
R2 = ({a, b}, {a, c}) (arcs of the triangular graph),
R3 = ({a, b}, {c, d}) (arcs of its complement),
five relations between first and second fibre:
R4 = ({a, b}, {{c, d}, {c, e}}),
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R5 = ({a, b}, {{a, c}, {a, d}}),
R6 = ({a, b}, {{c, a}, {c, d}}),
R7 = ({a, b}, {{a, b}, {a, c}}),
R8 = ({a, b}, {{c, a}, {c, b}}),
and the five inverses R9, . . . , R13 respectively,
eleven relations within second fibre:
R14 = ({{a, b}, {a, c}}, {{d, e}, {d, f}}),
R15 = ({{a, b}, {a, c}}, {{a, d}, {a, e}}),
R16 = ({{a, b}, {a, c}}, {{d, a}, {d, e}}),
R17 = ({{a, b}, {a, c}}, {{b, d}, {b, e}}),
R18 = ({{a, b}, {a, c}}, {{d, b}, {d, e}}),
R19 = ({{a, b}, {a, c}}, {{a, b}, {a, d}}),
R20 = ({{a, b}, {a, c}}, {{b, a}, {b, d}}),
R21 = ({{a, b}, {a, c}}, {{d, a}, {d, b}}),
R22 = ({{a, b}, {a, c}}, {{d, b}, {d, c}}),
R23 = ({{a, b}, {a, c}}, {{b, c}, {b, d}}),
R24 = ({{a, b}, {a, c}}, {{b, a}, {b, c}}).

(Note, that of those, 14, 15, 18, 19, 20, 22 and 24 are symmetric, (16, 17)
(21, 23) are the anti-symmetric pairs.

Relation Size Relation Size

0
`

n

2

´

1 3
`

n

3

´

2 n(n − 1)(n − 2) 3
`

n

2

´`

n−2

2

´

4
`

n

2

´

(n − 2)
`

n−3

2

´

5
`

n

2

´

2
`

n−2

2

´

6
`

n

2

´

2(n − 2)(n − 3) 7
`

n

2

´

2(n − 2)

8
`

n

2

´

(n − 2) 14 n
`

n−1

2

´

(n − 3)
`

n−4

2

´

15 n
`

n−1

2

´`

n−3

2

´

16 n
`

n−1

2

´

(n − 3)(n − 4)
17 n

`

n−1

2

´

2
`

n−3

2

´

18 n
`

n−1

2

´

2(n − 3)(n − 4)
19 n

`

n−1

2

´

2(n − 3) 20 n
`

n−1

2

´

2(n − 3)
21 n

`

n−1

2

´

2(n − 3) 22 n
`

n−1

2

´

(n − 3)
23 n

`

n−1

2

´

2(n − 3) 24 n
`

n−1

2

´

2

Table 1. Sizes of basis relations of S(n)

The set of edges of the total graph of the triangular graph is the union

R2 ∪ R7 ∪ R12 ∪ R19 ∪ R20 ∪ R24.

3.2 Structure constants of S(n)

Proposition 1 The structure constants of S(n) are functions of n. For n ≥
9, each such function is a polynomial function in n of degree at most 3.

Proof. To calculate a structure constant pk
i,j , we take the general represen-

tative pair, (X, Y ), of Rk, and try to find a general vertex Z such that
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(X, Z) ∈ Ri and (Z, Y ) ∈ Rj . The selection of (X, Y ) partitions the points
[1, n] into at most 6 parts of constant size (not dependent on n, but dependent
on X, Y ), and one part of size n− k where k is again dependent on X, Y but
not on n. So, the number of ways of selecting Z is a product of two or three
of the sizes of parts, or sizes of parts minus one, or sizes of parts minus 2 (or
maybe half this product, in case a set of two points needs to be selected), and
therefore is a polynomial of degree at most 3 in n.

Examples:
If we want to calculate p15

10,5:
({{a, b}, {a, c}}, {{a, d}, {a, e}}) partitions the set [1, n] to parts {a},

{b, c}, {d, e}, and the rest, of size n − 5. A vertex {x, y} such that
({{a, b}, {a, c}}, {x, y}) is in R10 and ({x, y}, {{a, d}, {a, e}}) is in R5 must
satisfy x ∈ {a}, y 6∈ {a, b, c}, x ∈ {a}, y 6∈ {a, d, e}. We have one way of
selecting x and n − 5 ways of selecting y, so p15

10,5 = n − 5.
If we want to calculate p14

14,14:
({{a, b}, {a, c}}, {{d, e}, {d, f}}) partitions [1, n] into {a}, {b, c}, {d},

{e, f}, and we need to find {{x, y}, {x, z}} such that x, y, z 6∈ {a, b, c, d, e, f},

so we have n − 6 ways to select x and (n−7)(n−8)
2 ways to select y and z, so

p14
14,14 = (n−6)(n−7)(n−8)

2 .
This last example shows why we need to assume n ≥ 9 for the general

argument. This is the case that requires the maximal number of points from
the original graph Kn.

Now we can use a computer to calculate the actual polynomials: Using
COCO, we found numerical values for all structure constants in the cases
n = 9, 10, 11, 12. Then for each triplet i, j, k we used Lagrange interpolation
in GAP to find the polynomial pk

i,j(n).

3.3 Mergings of S(n)

Looking at mergings of S(n) (for n ≥ 6) resulting in association schemes, we
see that in the general case there are only two mergings:

A strongly regular graph, Γ , with parameters (n(n−1)2

2 , n − 2, n − 3, 0).
This SRG is union of relations R8 ∪ R13 ∪ R22. This graph can be defined on
the vertices of T(n), denoted by {a, b} and ({a, b}, c) (the latter standing for
{{a, c}, {b, c}}), as follows: an edge between two vertices is if they share the

same two-set. Since µ = 0, this graph is isomorphic to n(n−1)
2 copies of Kn−1.

A rank 4 association scheme, whose classes are the unions of relations:
R0 ∪ R1;
R8 ∪ R13 ∪ R22;
R2 ∪ R6 ∪ R7 ∪ R11 ∪ R12 ∪ R18 ∪ R19 ∪ R21 ∪ R23 ∪ R24;
R3 ∪ R4 ∪ R5 ∪ R9 ∪ R10 ∪ R14 ∪ R15 ∪ R16 ∪ R17 ∪ R20.

When using the above notation ({a, b} and ({a, b}, c)) for the set of vertices
of T(n), the relations of this merging association scheme can be defined by
the number of points their two-sets share.
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With this observation we recognize that the rank 4 scheme is wreath prod-
uct M ≀Kn−1, where M is the rank 3 association scheme with basis graphs ∆,
T (n), and T (n).

The only exception is for n = 7 which has another SRG as a merging of the
relations: R3∪R4∪R8∪R9∪R13∪R15∪R18∪R20. This SRG has parameters
(126, 45, 12, 18), and will be discussed in subsequent publication [KliZJ].

For n = 5, relation R14 is actually empty, since it requires 6 different
points of Kn. So S(5) is rank 24 coherent configuration. This configuration
has 9 merging association schemes listed in Table 2. Some of the mergings are
discussed in [KliZ], [KliZJ].

rank mergings |aut| SRG parameters

5

(3, 4, 5, 9, 10, 15, 16, 17, 20)
(8, 13, 22)

(2, 7, 12, 18, 19, 24)
(6, 11, 21, 23)

1920

5

(3, 4, 9, 15, 20)
(8, 13, 22)

(5, 10, 16, 17)
(2, 6, 7, 11, 12, 18, 19, 21, 23, 24)

7680

5

(3, 7, 8, 12, 13, 15, 16, 17, 18)
(4, 9, 24)

(2, 5, 10, 19, 20, 22)
(6, 11, 21, 23)

1920

5

(3, 8, 13, 15, 18)
(4, 9, 24)

(2, 5, 6, 10, 11, 19, 20, 21, 22, 23)
(7, 12, 16, 17)

7680

4
(3, 4, 5, 9, 10, 15, 16, 17, 20)

(8, 13, 22)
(2, 6, 7, 11, 12, 18, 19, 21, 23, 24)

2333115

4
(3, 7, 8, 12, 13, 15, 16, 17, 18)

(4, 9, 24)
(2, 5, 6, 10, 11, 19, 20, 21, 22, 23)

2333115

3
(2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16,

17, 18, 19, 20, 21, 23, 24)
(8, 13, 22)

238314527 (40, 3, 2, 0)

3
(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16,

17, 18, 19, 20, 22, 24)
(6, 11, 21, 23)

51840 (40, 12, 2, 4)

3
(2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16,

17, 18, 19, 20, 21, 22, 23)
(4, 9, 24)

238314527 (40, 3, 2, 0)

(All mergings also merge reflexive relations, R0 and R1)

Table 2. Mergings of S(5)
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3.4 S(n) and T (n)

Proposition 2 S(n) = T (n)

Proof. First we recall that the total graph T(n) is a union of the relations
R2 ∪R7 ∪R12 ∪R19 ∪R20 ∪R24, so T (n) is a fusion configuration of S(n). It
is enough to show that no proper fusion configuration of S(n) contains T(n).

For 4 < n < 9 we check by a computer implementation of the Weisfeiler-
Leman closure algorithm that the closure of the total graph is indeed the
configuration S(n) (without empty relation R14 in the case n = 5). By using
COCO, we find that for n ≥ 6 there are two fusion association schemes of
ranks 3 and 4, except for n = 7 where there is another scheme of rank 3.

For n ≥ 9, we confirm by computer search that those two mergings always
appear, no other mergings appear for all n, and there are no sporadic mergings
other then those described in 3.3.

This proves that S(n) = T (n), since T (n) is a merging of S(n), but the
mergings we found do not admit T(n) as a union of relations.

4 Total configuration of L2(n)

4.1 Definition and basic properties.

The lattice square graph, L2(n), is a graph with n2 vertices, usually the vertex
set is denoted by {1, 2, . . . , n}2, with (a, b) adjacent to (c, d) if a = c or b = d.
It is usefull to regard the vertices as points in the n×n-grid. Two vertices are
adjacent if and only if they are in the same row or the same column. For our
purposes it is also useful to see this graph as the line graph of the complete
bipartite graph Kn,n.

L2(n) is a regular graph of valency 2(n−1), so it has n2(n−1) edges. The
total graph T (L2(n)) has n2 + n2(n − 1) = n3 vertices.

Let us denote vertices of L2(n) by (a, x), where a, x ∈ {1, . . . , n}. The
automorphism group G = Aut(L2(n)) of order 2(n!)2 is generated by Sn acting
on first coordinate, Sn acting on second coordinate, and involution mapping
(a, x) to (x, a), denoted by t. In other words, G is the exponentiation Sn ↑ S2,
as in [FarKM94].

In this notation, edges of L2(n) are of the form {(a, x), (a, y)} (a pair of
vertices in the same row) or {(x, a), (y, a)} (a pair of vertices in the same
column).

We shall denote total coherent configuration of L2(n) by T(n) and Schurian
total configuration of L2(n) by S(n).

In the following listing of representatives of relations of S(n), a, b, c, d

stand for distinct elements of [1..n], and x, y, z, w stand for distinct elements
of [1..n]. The sets {a, b, c, d} and {x, y, z, w} are not necessarily disjoint.

In relations R4, . . . , R11 the representative of edges appear all as a pair of
vertices in the same row. Since the involution t is in the automorphism group,
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and maps a pair of vertices in the same row to a pair of vertices in the same
column, those edges are also represented. For example, ((a, x), {(a, x), (b, x)})
is in R4, since it is the result of action of t on ((x, a), {(x, a), (x, b)}) which is
clearly in R4.

In the same manner, when looking at relations R12, . . . , R20 (pairs of edges
of L2(n)), it does not matter if the first edge is a pair of vertices in the same
row or a pair of vertices in the same column, but it does matter whether both
edges are of the same kind (row or column) or of different kinds. Relations
R12, . . . , R16 are of the former type, while relations R17, . . . , R20 are of the
latter type.

S(n) has the following 21 relations (for n ≥ 3):
Reflexive relations:

R0 = ((a, x), (a, x))
R1 = ({(a, x), (a, y)}, {(a, x), (a, y)})

Relations within first fibre:
R2 = ((a, x), (a, y))
R3 = ((a, x), (b, y))

Relations between first and second fibre:
R4 = ((a, x), {(a, x), (a, y)})
R5 = ((a, x), {(b, x), (b, y)})
R6 = ((a, x), {(a, y), (a, z)})
R7 = ((a, x), {(b, y), (b, z)})

Their inverses:
R8 = ({(a, x), (a, y), (a, x)})
R9 = ({(b, x), (b, y), (a, x)})
R10 = ({(a, y), (a, z), (a, x)})
R11 = ({(b, y), (b, z), (a, x)})

And relations within second fibre:
R12 = ({(a, x), (a, y)}, {(a, x), (a, z)})
R13 = ({(a, x), (a, y)}, {(a, z), (a, w)})
R14 = ({(a, x), (a, y)}, {(b, x), (b, y)})
R15 = ({(a, x), (a, y)}, {(b, x), (b, z)})
R16 = ({(a, x), (a, y)}, {(b, z), (b, w)})
R17 = ({(a, x), (a, y)}, {(a, x), (b, x)})
R18 = ({(a, x), (a, y)}, {(a, z), (b, z)})
R19 = ({(a, x), (a, y)}, {(b, x), (c, x)})
R20 = ({(a, x), (a, y)}, {(b, z), (c, z)})

R18 and R19 form an anti-symmetric pair. All other relations within second
fibre are symmetric.

The total graph T (L2(n)) is the union of the relations: R2 ∪ R4 ∪ R8 ∪
R12 ∪ R17.
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Relation Size Relation Size

0 n2 1 n2(n − 1)
2 2n2(n − 1) 3 n2(n − 1)2

4 2n2(n − 1) 5 2n2(n − 1)2

6 n2(n − 1)(n − 2) 7 n2(n − 1)2(n − 2)
12 2n2(n − 1)(n − 2) 13 1

2
n2(n − 1)(n − 2)(n − 3)

14 n2(n − 1)2 15 2n2(n − 1)2(n − 2)
16 1

2
n2(n − 1)2(n − 2)(n − 3) 17 2n2(n − 1)2

18 n2(n − 1)2(n − 2) 19 n2(n − 1)2(n − 2)
20 1

2
n2(n − 1)2(n − 2)2

Table 3. Sizes of basis relations of S(n)

4.2 Structure constants of S(n)

As in the case of the complete graph in the previous section, when we calculate
pk

ij for a given triplet (i, j, k), we actually take an element (M, N) of relation
Rk, and count the amount of elements P such that (M, P ) ∈ Ri and (P, N) ∈
Rj . P is either a vertex or an edge of L2(n), so we need to select two or
three elements of [1..n]. For each element of [1..n] that we need to select, it
either needs to be one already used in M or N , in which case the number of
options is a constant independent of n, or not used, in which case the number
of options is n − r, where r is dependent on i, j, k, but not on n. After all
selections, we might need to multiply by 2 (if the representative element of Ri

is not invariant under the involution t), and similarly for Rj an Rk. We also
need to divide by 2, if P is and edge of L2(n), since we selected two elements
the order of which is irrelevant. Finally, we conclude that pk

ij is a polynomial
function in n of degree at most 3.

For finding the minimal n for which this argument will work, we
note that the worst case is in calculation of p16

16,16, where we have
pair ({(a, x), (a, y)}, {(b, z), (b, w)}), and need to find an edge of L2(n)
{(c, u), (c, v)}, such that u is different from x, y, w, z, and so is v. In con-
clusion:

Proposition 3 The structure constants of S(n) are functions of n. For n ≥
6, each such function is a polynomial function in n of degree at most 3.

4.3 Mergings of S(n)

S(n) admits no association schemes as mergings (for n ≥ 3).

4.4 S(n) and T(n)

Proposition 4 S(n) = T(n)
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Proof. First we recall that the total graph T (L2(n)) is a union of the relations
R2 ∪ R4 ∪ R8 ∪ R12 ∪ R17. So, T(n) is a fusion configuration of S(n). It is
enough to show that no proper fusion configuration of S(n) contains T(n).
This is done by computer search.

5 Details of computer search

The computer search mentioned in sections 3.4 and 4.4 is based on the notion
of good sets, which goes back to [FarKM94]:

If W =< A0, . . . , Ar > is a coherent algebra, then we define a good set to
be a subset B ⊆ [0..r] such that:

GS1 M =
∑

i∈B

Ai is a symmetric or an anti-symmetric matrix;

GS2 if M2 =

r∑

i=0

biAi then for every i, j ∈ B, bi = bj;

GS3 I ◦ M = M or I ◦ M = 0 (◦ is Schur-Hadamard product).

With this definition of a good set, we see that for a partition P = {P1, . . . , Pk}
of [0..r] to induce a coherent subalgebra, each Pi must be a good set. This
reduces the computational search for subalgebras from a search through all
partitions of [0..r], to a search through partitions consisting of good sets only.

This method, originally developed in [FarKM94] for use with a numerical
tensor of structure constants, also works for a polynomial tensor. A set that
is good by it’s polynomial parameters, that is good for all n ≥ 9, is called
polynomially good set.

I The graphs T(n) are constructed for n = 9, 10, 11, 12, and for each such
n, the WL-closure, T (n) is calculated. We then check that it coincides
with S(n), which is calculated by COCO.

II The structure constants of the four coherent configurations are used to
generate the polynomial tensor of structure constants (using Lagrange
interpolation).

III Instead of searching for all mergings, we limit our search to specific kinds
of mergings:

i Mergings resulting in association schemes: This adds another require-
ment for a good set: for B to be a good set, the graph with edge

set
⋃

i∈B

Ri must be regular. This additional requirement leaves 5 good

sets and quick search shows that only two mergings (those described
in 3.3) appear.

ii Mergings that admit T (n) as a merging. This means that Q =
{2, 7, 12, 19, 20, 24} is a union of sets from the partition, or in other
words an additional condition for good sets R is that either R ⊆ Q

or R ∩ Q = ∅. Since none of the previous two mergings fulfill this
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condition, we know that such mergings do not result in association
schemes.
Since we only have two fibres, this means that the mergings we are
looking for also have two fibres. This allows us to partition the rela-
tions into cells according to fibres:

{{0}, {1}, {2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12, 13}, {14, . . . , 24}}

and require a good set to comply with partition, that is, to be a subset
of one of the sets in the partition.
Those two conditions leave 48 good sets and a simple search shows
that none of the partitions result in a coherent configuration.

IV The previous step is enough to show that there is no merging (except for
the two described in 3.3) that appear for every n ≥ 9. To confirm that no
other mergings appear for particular n > 7 we use the following principle:
When we check if a set B = {a1, . . . , al} is good, we actually calculate

the sums Qk =
∑

i,j∈B

pk
i,j for each k ∈ B. Clearly, if all these sums are

equal, then the set is good. If it is not good, then we have (at least) two
elements i, j ∈ B such that the polynomials Qi and Qj differ. If a natural
number n0 is a root of the polynomial Qi − Qj , it means that while the
set B is not a good set for all n, it might be a good set for n0. In this case
we add this n0 to the list of n for which an exceptional merging might
appear.
In the case of S(n), the list of possible exceptions included all the integers
in the range [1..22], and a computerized brute force search shows that for
no n in the range 7 < n ≤ 22, an exceptional merging appear.

A similar search is performed for the total configurations of the lattice
square graphs. In this case there were no mergings resulting in associa-
tion schemes which appear for all n, and the list of possible exceptions is
{3, 4, 5, 6, 7, 8, 9, 10, 11, 17}. A computerized search shows that there is no ex-
ceptional merging resulting in an association scheme for any of those values.

6 Conclusions

It is easy to check that the total graph of the complete graph Kn with n

vertices is isomorphic to the triangular graph T (n + 1). This observation by
[BehCN68], see also [Har69] was one of the earliest stimuli of interest to this
concept.

We again refer to [KliZ] for a detailed discussion of exceptional Schurian
association scheme with the automorphism group of order 1920 which appears
as a merging of classes in T (5).

The triangular graph T (5) is a complement of the Petersen graph. Petersen
graph may be considered as the smallest Moore graph (see, e.g. [CamvL91]).



14 Matan Ziv-Av

This is why we are also investigating the total graph configurations of the
complements of the unique Moore graph of valency 7 and of a potential Moore
graph of valency 57, see [KliZJ].

It seems as a very attractive task to search for other examples of strongly
regular graphs, which have total coherent configuration admitting exceptional
mergings. Our results for the graphs L2(n) provide a small evidence for be-
lieving that such examples are quite rare.

We hope that the use of Gröbner bases (cf. [Leo]) may help in computerized
investigation of other infinite series of classical strongly regular graphs.

The problem of the description of the 2-orbits of the automorphism group
of an arbitrary graph Γ is closely related to the graph isomorphism problem,
see e.g. [KliRRT99]. In case when for a graph Γ its total graph coherent
configuration and the Schurian total graph coherent configuration coincide,
using WL-closure, we get as a by-product a polynomial-time procedure for the
description of 2−orb(Aut(Γ )). At this moment we are not aware of an example
where those two coherent configurations are distinct. Certain possibilities for
such counterexamples will be discussed in [KliZJ], in particular, in view of the
results from [EvdP99] and related publications.
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