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Secret unity, not yet fully uncovered

@ lanStewart: "It seemed completely mad. It seemed so mad, in
fact, that Killing was rather upset that the exceptional groups
existed, and for a time he hoped they were a mistake that he
could eradicate. They spoiled the elegance of his classification.
But they were there, and we are finally beginning to understand
why they are there. In many ways, the five exceptional Lie groups
now look much more interesting than the four infinite families.
They seem to be important in particle physics, as we will see; they
are definitely important in mathematics. And they "have a secret
unity, not yet fully uncovered...

@ Exceptional Lie groups: Ee, E7, Es, Fa, G>

"Why beauty is truth: a history of symmetry”, 2007
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Esroot system

©® The Egroot system is arank 8 root system containing 240 root
vectors spanning R,

@ Let us connect all non-orthogonal roots with each other.

The graph thus obtained is the beautiful color computer-
generated picture given on John Stembridge’s home page
(based on Peter McMullen’s drawings (1960) ).

@ Inthepicture of the root system Eg, there are 6720 edges.

https://websites.umich.edu/~jrs/coxplane.html
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Stembridge — McMullen drawing

This picture is projection of the root system Eg
into the so-called Coxeter plane
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Atlas of Lie Groups and Representations

€ The Atlas of Lie Groups and Representations is a project to

make available information about representations of
reductive Lie groups. In particular: classifying all of the
iIrreducible unitary representations of a given Lie group.

® David Vogan: At 9 a.m. on January 8, 2007, a computer

finished writing sixty gigabytes of files: Kazhdan-Lusztig
polynomials for the split real group G(R) of type Eg. Their
values at 1 are coefficients in irreducible characters of G(R).
The biggest coefficient was 11,808,808,

©® The Weyl group of Eg, which is the group of symmetries of the

maximal torus (and root system) in the whole Lie group, has
order 2'*3° 527 = 696 729 600.
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Root system (definition)

Aroot system @ in finite-dimensional vector space E is a finite
set of non-zero vectors (called roots) that satisfy the following
conditions:

® The roots span E.
@ Ifaroota€® then kae®only fork==+1.

©® Foreacho e®, theset ®isclosed under reflection through
the hyperplane perpendicular to a.. perpendicular to o

@ If o,p €D, then the projection of p onto the line through O
is an integer or half-integer multiple of o.
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Reflections and Weyl group

® Reflection S, .

Sa () b —2(a, )/ (0 0)
¢ Reflection s, for simply-laced case:

SOL (ﬁ) = B —(OL, B)

¢ Thegroup generated by reflections through
hyperplanes associated to the roots of @ is called the

Weyl group of O.

¢ Sizes of Weyl groups Ee ,E7 Es:
Ee— 51,840, E7-2,903,040, Eg—-696,729,600
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Coxeter-Dynkin diagrams

® H.S.M. Coxeter: Theuse of trees as diagrams for groups was
anticipated in 1904, when C. Rodential was commenting on a
set of models of cubic surfaces. He was analyzing the various
rational double points that can occur on such a surface. In 1931
| used these diagrams in my enumeration of kaleidoscopes,
where the dots represent mirrors. E.B.Dynkin re-invented the
diagrams in 1946 for the classification of simple Lie algebras.”

¢ Enumeration of kaleidoscopes is a classification system
developed by H.S.M. Coxeter for finite reflection groups. A
standard kaleidoscope consists of multiple mirrors
arranged in a chamber.

“The evolution of Coxeter-Dynkin diagrams”, 1991
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Using simple roots for semisimple Lie lagebras

€ E.B.Dynkin: “l worked at Gelfabd seminar on Lie groups. Gelfand
requested that | review the H. Weyl - Van der Waerden papers on
semisimple Lie groups. | found them very difficult toread, and | tried to
find my own ways. |t came to my mind that there is a natural way to select
a set of generators for a semisimple Lie algebra by using simple roots (i.e.,
roots which cannot be represented as a sum of two positive roots). Since
the angle between any two simple roots can be equal only to /2, 2/3, 3/4,
5/6, a system of simple roots can be represented by a simple diagram. An
article was submitted to Mat. Sbornik in October 1944. Only a few years
later, when recent literature from the West reached Moscow, | discovered
that similar diagrams have been used by Coxeter for describing
crystallographic groups.”

©® Asetof simple roots is a basis for the root system. Any root can be expressed
as a sum of simple roots.

“Foreword in “Selected papers of E. B. Dynkin”, 2000
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Simple roots as vertices of Dynkin diagrams
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Admissible diagrams introduced by R.Carter

@ In1972, R. Carter introduced the so-called admissible diagrams
representing elements of conjugacy classes in the Weyl group.

¢ AdiagramI' is said to be admissible if

(a) The nodes of G correspond to a set of linearly independent roots in @
(b) If a subdiagram of G is a cycle, then it contains an even number of

D ,(a,) D (a,) Dg (ay) D _(a,)

“Conjugacy classes in the Weyl group “, 1972
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Surprising cycles, dotted and solid edges

12

€ The presence of cycles was unexpected, since the extended Dynkin

diagram An cannot be part of any admissible diagram due to the fact that
we are within a finite root system.

@ It turned out that the cycles in admissible diagrams essentially differ
from the cycle A, . Namely, in such a cycle, there must be two pairs of roots:
A pair with a positive inner product together with a pair with a negative
inner product.

@ This observation prompted me to distinguish such pairs of roots: draw
dotted (resp. solid) edge {a, B} if (a, B) > O (resp. (a, B) < 0).

@ The admissible diagrams with dotted and solid edges are called Carter
diagrams. The Carter diagram is a generalization of Dynkin diagrams that
allows cycles of even length.
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Equivalence of Carter Diagrams: Exclusion of long cycles

Lemma 1. Every cycle in the Carter diagram contains at least one solid
edge and at least one dotted edge.

Theorem 1. Any Carter diagram containing I-cycles, where | > 4, is
equivalent to another Carter diagram containing only 4-cycles.
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“Equivalence of Carter Diagrams”, 2017
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Homogeneous classes of Carter diagrams Ee, E7, Es

E E(a;) 7 (2, ~(a )
E-S EE(ﬂIi%/‘ ES(EZ}@ ES(HRJ EE(E4'}
) g & &
Eg(a,) Eg(a,) E fa )N Eg(a,)
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McKee-Smyth diagrams: Eigenvalues in (-2, 2)

¢ Complete list of 8-vertex Carter diagrams with circles can be found in
the paper of McKee and Smyth.

¢ Signed graphs. The {-1,0,1} -matrix with zeros on the diagonal is

regarded as adjacency matrix of graph,where a non-zero (a, 3)th entry
denotes -1 or 1 on the edge corresponding vertices a and 3. The
signed graphs exactly correspond to diagrams with solid and dotted
edges.

¢ McKee-Smyth’s theorem: the signed graphs maximal with respect to
having all their eigenvalues in (-2, 2) coincide

Exactly with Carter diagrams Es(ai), 1<i<8 and Di(a;),i<1/2 - 1.

“Integer symmetric matrices having all their eigenvalues in the interval [-2, 2]“, 2007
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Carter diagrams Es(aj), 1 <i <8
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Linkage root, linkage diagram and linkage label vector

@ The Carter diagram I is called bicolored if I-set of roots S can be

partitioned into two disjoint subsets Sq ={oy***&} and Sg=1{Bi***H}, where
roots of Sq (resp. Sg ) are mutually orthogonal. The partitionS =S54 U Sg is

called bicolored partition.

@ Consider the extension of the root subset S by means of theroot y € @,
so that the set of roots S’ =S Uy is linearly independent .

@® Thenewdiagram I is obtained by addition solid edges if

(v, Ti) = -1 and dotted edges if (y, ti) = 1, where ti€ S’. The diagram I’ is said
to be a linkage diagram.

@® Thevector {(y,Ti) | Ti € S} is called the linkage label vector and is
denoted by yV.
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Examples: linkage diagrams and
linkage label vectors for Ee(aq)
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Linkage root vector

@ Letl beaCarter diagram, and S be some '-set. What root y
can be added to S so that {S U y}is a set of linearly independent

roots? Such aroot is called a linkage root vector.

@ The quadratic form BYcorresponding to the matrix B is called
the inverse quadratic form. Both, the quadratic form B¥and
matrix B~' depend on the diagram ', which, for simplicity, is
omitted.

Theorem 2. Let yY be the linkage label vector corresponding
toarooty. Theroot yisalinkage root if and only if

BY(yY)<2.
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The vertex extension of a Carter diagram

@ Let I beone of simply-laced Dynkin diagrams, I’ be one of
the Carter diagram out of the homogeneous class C(I').

Consider any I'-set S and I'"-set S’ obtained by the transformation
constructed by the transition theorem (see reference below),

then Span(S) = Span(S’).

® Let G be aDynkindiagram with the root system ®(G) such that
(1) rank(D(G)) = rank(P(I)) + 1
(2) Span(S) < Span(d(G))
The Dynkin diagram G is said to be the vertex extension of T .
The choose of the root system G is ambiguous.

“Transitions between root subsets associated with Carter diagrams.”,
2022
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Wey! group of quadratic form BY

® The Weyl group WV ofBVis generated by dual reflections s;*:
sy Vi=yV—(yY, mTV

® Values (Si*Yv)k belong to {-1,0,1 }.

©® The action of reflections si and dual reflections si*related as

follows. (SiY)V =Si"‘YV .

® Reflections Si* preserve the quadratic form BY
BV(Si* YV ) = BV(YV ) for linkage label vector YV
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Partial and full linkage systems

@® Denote by L&T’, S’) the set of linkage diagrams as follows:
Lar, S ={yV |y € D), y & Span(5) 1,
where ®(G) is the root system associated with G, and S’ is some I'-set.

Proposition 1. The set Lgr’, S’) does not depend on choosing
[-set S'.

@® ThesetLgr,S’) will bedenoted by L&), and is called

partial linkage system. The union of all partial systems by all possible vertex
extensions is said to be the full linkage system or linkage system of I'".

L") = ULgr).

Proposition 2. For the homogeneous Carter diagrams I and '
the sizes of the full linkage systems are the same:

L) =LM) |
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Example: Three vertex extensions of Ds
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Three components linkage diagrams of L (Da(a1))
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Three components linkage label vectors of L (Da(a1))
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Two components linkage label vectors of L (Ds)
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Two E-components of linkage label vectors of L (Ds)
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The D-component of linkage diagrams of L (D))

28

The linkage system £(D fj has

the single D-component that

contains 2/ linkage diagrams.
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The D-component of linkage system of L (D))
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Number of linkage diagrams for D; and Di(ax)

g Number of Number of linkage diagrams,
components and p = BY( V)
D-components | E-components | In all
p=1 p=1i

Dy, Dy(ay) 3 AX8=24 - 24
Ds., Ds(ay) 3 10 2 X 16 = 32 42
D¢, Dg(a1), Dg(az) 3 12 2 %32 =64 76
D7, Dy(aq), Dy(az) 3 14 2 X 64 =128 142
Dy, Di(ay), l > 7 1 21 - 21
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Enhanced Dynkin diagrams introduced by Dynkin-Minchenko

® Let T bea Dynkin diagram of the complex semisimple Lie algebra g.

Subdiagrams of [ are Dynkin diagrams of reqular subalgebras of g. However,
not all reqular subalgebras can be obtained in this way.

@ These problems are solved by Dynkin and Minchenko using so-called

enhanced Dynkin diagrams. They constructed an enhancement of I by a
recursive procedure which they call the completion.

@ At each step of the procedure, find a Ds-subset in the already introduced

nodes, add the minimal root of this subset, and connect it by edges to the
corresponding part of the already introduced nodes.

“Enhanced Dynkin diagrams and Weyl orbits”, 2010.
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Example: completion procedure for Es
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Signed enhanced Dynkin diagrams

@ Vavilov and Migrin merged the enhanced Dynkin diagrams

approach with the solid/dotted edge concept of Carter diagrams.
They called these diagrams signed enhanced Dynkin diagrams.

@ Theorem (Vvavilov-Migrin). The signed enhanced Dynkin
diagrams of types E¢4, E7, Eg contain all Carter diagrams of
conjugacy classes of the Weyl groups W(Ee), W(E;), W(Es).

@ They provide an a posteriori observation of this fact.

“Enhanced Dynkin diagrams done right", 2021
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Gabrielov’s example corresponding to a singularity x*+ y>+ z2

Changing the basis corresponding to a singularity. He studied the
quadratic forms associated with singularities and used technique
of solid/dotted edges with the same sense.
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“Intersection matrices for certain singularities”, 1973
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Integral quadratic form and solid/dotted edges

¢ The presence of a dotted or solid edge reflects the fact that the

integral quadratic form (Tits form) takes values +1 or -1 at the roots
connected by the given edge.

¢ Another contexts for integral quadratic form and solid/dotted

edges: de Graaf and Elsahvili used the Carter diagrams with solid
and dotted edges for description of nilpotent elements in
semisimple Lie algebras.

“Induced Nilpotent Orbits of the Simple Lie Algebras of Exceptional Type”, 2009
“Integer quadratic forms and extensions of subsets of linearly independent roots” 2025
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Thank you!
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